Collective behavior of shear bands
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The radial collapse of a thick-walled cylinder under high-strain-rate deformation

(~10% s-1) was used for the investigation of shear-band initiation and propagation in titanium
and austentic stainless steel. The bands were observed to form on spiral trajectories and were
periodically spaced. The frequency of initiation of the shear bands along the internal surface
of the cylinder was established, and the spiral trajectory was compared with calculated values
based on initiation of shear bands on surfaces of maximum shear strain. The shear-band
spacing calculated from two existing theories was compared with the observed values. The
theoretical predictions are found to give a reasonable first estimate for the actual spacings.

1. INTRODUCTION

Shear bands have been the object of research since the 19th century, when they were first
observed and correctly interpreted by Tresca ( for overviews, see 1994 special issue of Mech.
of Matls. [1]). Numerous studies have adressed both mechanistic and microstructural features
of shear bands. It is recognized that shear localization is a very important and often
dominating damage mechanism for plastic deformation, especially at high strains and strain
rates. A recurrent topic in studies of damage in materials is the question of spacing between
damage sites. The ability to predict and possibly control significant features of the failure
patterns, such as numbers, sizes, locations, and velocities of residual particles is dependent on
a fundamental and quantitative understanding of evolution laws for these localized damage
sites. A first step in obtaining an answer would be to estimate the spacing of initial nucleation
sites since damage tends to grow in specific places in the material. Of course, this leaves out
the questions of secondary damage, subsequent interaction of damage sites, and the like, but it
is still a crucial beginning.

Whereas hundreds papers were devoted to the study of one isolated shear band, the
analyses carried out by Grady and Kipp [2] and Ockendon and Wright [3] are the only
theoretical efforts at elucidating their collective behavior. These analyses are based on
momentum diffusion as unloading occurs within the band and pertubation analysis of rate
dependent homogeneous shearing, respectively.

The objectives of this paper are to report observations of shear-band assemblages
obtained under controlled initiation and propagation conditions and to compare these
observations with these existing theories. An extended version of this report will be published
elsewhere [2].
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2. EXPERIMENTAL PROCEDURE AND RESULTS

The thick-walled cylinder technique was used; it was developed and is described by
Nesterenko and coworkers [3, 6]. Figure 1(a) shows the experimental configuration used to
produce the radial collapse of the metallic specimens. Two different metals were
investigated: commercial purity titanium with equiaxed grains having average size of 72 um
and austentic stainless steel X18H9T (Soviet designation;analogous to 304L) with grain size
of 30 pm. The system uses the controlled detonation of an explosive to generate the high
pressures required for the collapse of a thick-walled cylinder. The metallic specimens are
placed within a copper driver tube. The explosive is placed coaxially with the specimen and
detonation is initiated at the top, propagating along the cylinder axis.

The state of stress generated within the collapsing cylinder is one of pure shear. This is
shown in Figure 1(b), in which the distortion of an elemental cube at radius I is followed as it
moves towards the axis of the cylinder. The shear strain in the axial direction is zero, there is
no rotation of the elemental cube and the material is assumed to be incompressible. The
planes of maximum shearing lie at 45° to a radius and remain unrotated as deformation
proceeds inwards, at least until shear bands develop. As the tube is collapsed inwards, its
inner surface experiences increasing strains which tend to infinity as radius of the pore R; —
0. In the current investigation the initial radius of the internal cavity, R , was equal to 5.5 mm.
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Figure 1. (a) Experimental configuration for collapse of thick-walled cylinder; (b) pure shear
deformation of an element as tube collapses; (c) radial strains (as a function of
normalized radius) during collapse for different initial radii; end points correspond
to strains for complete collapse.




The radial, tangential, axial and maximum shear strains for this geometry are given by:
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The radii ry and 1, (Fig. 1b), representing the initial and final positions of a general point, are
related by the conservation of mass, if deformation is uniform:

2 2 _ 2 2

ro’ =Ro=r;—Rj @
The strain rate for a general material point can be evaluated from the radial velocity of
the cylindrical cavity v(t), which was measured by an electromagnetic technique. The
insertion of Ti or stainless steel cylinders inside a copper driver tube, shown in Figure 1(a),
does not essentially change the time of collapse in comparison with the uniform copper
cylinder having the same geometrical dimensions, because the overall mass (and initial
velocity) does not change by more than 20 % (in case of Ti). This is why the velocity data
obtained for a monolithic copper cylinder can be used, as a first approximation, to calculate
the strain rate. For example, for a point on the inner cavity, the following relationship is used

to calculate the shear strain rate at 45° to a radius:

V(1)
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The strain rates in the specimens fluctuated around 3.5x104 -1 (Ti) and 6x10%4 s-1 (SS).
Figure 2(a) shows the final appearance of the cross-section of the titanium specimen.
The spiral shear bands forming around the cylinder axis are clearly seen. The traces of the
shear bands show the pattern of growth in a clearer way; they are depicted in Figures 2(b) and
2(c) for titanium and stainless steel, respectively. The following observations can be made:
a) The shear bands initiate at the surface of the internal hole and propagate outwards;
b) The angle of the extremities of the shear bands with the radial directions fluctuates
around 45°, which is the plane of maximum shear stress ( and strain). This is shown
for three shear bands in Figure 2(b).
¢) Most spirals have the same sense, clearly demonstrating that there exists a
communication between the stress fields of the shear bands.
d) In the stainless steel specimen (see arrows in Fig. 2(c)) there are several bifurcation
events. These are marked by arrows.
Two important simplifying assumptions are made in the analysis that follows:
a) The shear strains for shear band initiation and propagation are identical;
b) The shear bands form simultaneously.

With these assumptions, the radius r_provides the critical shear strain 7y, for shear-band
propagation. It is therefore possible to establish the value of the radius of the internal hole,
Rj, at which initiation takes place.

The radius of the inner pore R, , corresponding to the moment of shear initiation, can be
found if the hypothesis is introduced that critical strains for shear-band initiation and
propagation are equal. Using the Eqn. 1 for strains and the incompressibility condition(Eqn.
2) in case of complete collapse (R; = 0): .
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Figure 2. Shear - band patterns on cross section of collapsed specimens; (a) optical
micrograph for titanium; (b) tracing of shear bands for titanium; (c) tracing of
shear bands for stainless steel.



Shear band spacings L, at a known Rj , can be obtained from the measured number of
shear bands, N:
2TR; 1
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Analysis of shear-band traces of Figure 2 enables the calculation of the shear-band
spacing at initiation, L, .. The important parameters are given in Table 1. These values of
L., are 1 and 0.85 mm at r, for titanium and stainless steel, respectively. The critical shear
strain for shear band propagation in titanium is found to be equal to 0.38; this is within the
range of instability strains experimentally observed by Meyers et al [7] for the same material,
using a hat-shaped specimen in a Hopkinson bar: 0.2 to 0.45. The corresponding temperature

rise AT is on the order of 80 - 330 K. Localization at the shear band leads to much higher

strains and temperatures, as calculated by Meyers et al. [7]. It is thought to be connected to
dynamic recrystallization.

Table 1.
Experimental shear - band parameters for thick-walled cylinder method; shear band spacing

L.,,> and number N.
Material If, Ry, N Yo 7 R, Lexps
mm mm 1 mm
S
Ti 8 4.5 20 10.22 3.5x104 1
SS 5.5 3.9 21 0.4 e 0.85
6x10

3. ANALYTICAL PREDICTIONS

It is possible to compare the observed spacing between shear bands with predictions from
calculations by Grady and Kipp(GK) [2] for rate independent materials or the more recent
result given by Ockendon and Wright(OW) [3] for rate dependent materials.

The basic notion, used in the GK analysis, is that rapid loss of strength or ability to
transfer shearing tractions across the developing shear band affects neighboring material by
forcing it to unload. The predicted spacing is given as
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In this equation the applied shear strain rate is Yo, and the relation between flow stress and
temperature is assumed to be

T=1,(l—-a9) @)

where To is the strength at a reference temperature T, U is the relative temperature T-T,, a a
softening term, and C is the heat capacity.

The OW analysis is based on the notion that shear bands arise from small, but growing
disturbances in an otherwise uniform region of constant strain rate. Disturbances do not
propagate in perpendicular directions, but simply grow in place, so the most likely minimum
spacing is obtained by finding the fastest growing wavelength. The resulting spacing, Loy, (to
lowest order terms) is:
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Although the approaches taken by GK and OW are completely different, it is a
remarkable fact that except for numerical factors and the rate constants, the two results are the
same.

The GK and OW formulations were applied to the materials tested in Section 2 by means
of the use of Equations 6 and 8 , respectively. They enabled the calculation of the shear-
bands spacings L, and Low respectively. Data for Ti were taken from Meyers et al. [2] and
data for SS from Folansbee [8] and Epshtein [9].

The physical parameters in the GK and OW models and the calculated shear-bands
spacings L, and L, are presented in Table 2. It is seen that both models provide reasonable
estimates of L, and are in agreement with the experimental results (Table 1). Taking into
account the one - dimensional character of the models and three - dimensional geometry of
experiments, the agreement of both theoretical predictions with experimental results should be
considered satisfactory.

It should be mentioned that the OW model describes only the spacings between initiation
sites for shear bands, whereas the GK model describes the spacing of fully formed bands. If
the spacing of shear bands is determined by their initiation, the OW model should be obeyed.
On the other hand, if propagation establishes the spacing, the GK model should dominate. It
seems clear that the OW analysis successfully predicts the initiation for Ti and SS. The
bifurcation of the shear bands (Figure 2(c)) is possibly indicative of a momentum -
diffusion(GK) process: once the bands reach a spacing above a critical value, new bands are
formed to accomplish the deformation.

Table 2.
Material parameters and theoretical predictions of shear-band spacing, L, for Ti and SS.
Material m k, C, axl107, L.y, Low,
To(To), |JsmK |J/kgK |K mm | mm
MPa
Ti 0.033 1300 19 528 15 1.8 0.3
SS 0.05 1100 14.7 460 7.2~ 1.7 0.3

4. COMPARISON OF PREDICTED AND OBSERVED SHEAR - BAND
MORPHOLOGY

The shear band morphology can be obtained by calculating the trajectory of the tip of the
shear localization region. The following assumptions were made:

1. The overall movement of the material, at distances relatively far outside the central
hole, is radially convergent with an axis of symmetry coincident with the axis of the cylinder.
In actual deformation, the geometrical constraints are such that an additional bending of the
shear segments is required for the total collapse of the void.

2. The critical effective strains for shear band initiation and propagation are identical and
independent of strain rate. Under pure shear, the hypothesis of critical effective strain or
critical shear strain are identical.

3. Shear-band initiation takes place at the internal surface of the hole and all shear bands
are created simultaneously.

4. The tip of a shear band propagates along the surfaces of maximum shear strain.

5. Material is incompressible.

It was possible to develop an equation that describes the shear-band trajectories. The
derivation is given in [4] and will not be reproduced here. Only the final equation and its
graphical representation are given. The entire assemblage of shear bands can be represented
by assuming that they create a periodical array with spacing L and the same sense. In order to
do this in a more general way, the critical shear strain for shear band initiation is used to
replace r, ; thus, the solution acquires generality. The number of shear bands forming on the



circumference has to be an integer, and therefore the calculated number i has to have an
integral upper bound, which is indicated by “int” below. Each solution i represents one
curve.
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Equation 9 represents the entire assemblage of the shear bands; L can be the experimental
(L., ) or calculated (Loy, L) spacing. Figure 3 shows the application of Equation 9 to the
constitutive behavior of titanium. The correspondence of the shape of the curves with the
actual experimental results (Figure 3(b)) is satisfactory. It should be noted that the regions
within the dashed circle of Figure 6 show considerable deviation from the experimental
configuration (Fig. 3b)because additional bending of the shear zones is kinematically
necessary for total collapse; this effect is not incorporated into analysis.

ds=45°

Figure 3. Calculated shear - band pattern produced by collapse of thick - walled cylinder;
number of shear bands N = 20 and radius r, = 8 mm for shear band extremity

correspond to experimental values for Ti.



5. SUMMARY AND CONCLUSIONS

It has been experimentally demonstrated, using the high-strain radial collapse of thick-
walled cylinders of titanium and stainless steel, that shear bands undergo a self-organization
process as they initiate and propagate. Mainly one direction of spiral shear bands - either
clockwise or counterclockwise - was observed in each experimental event. The spiral
trajectories correspond to surfaces of maximum shear strain. The array of shear bands,
diverging from the initiation region, on the internal surface of the thick-walled cylinder, is
periodic, with a characteristic spacing. For stainless steel, bifurcation of the shear bands is
observed to occur at a critical strain (or radius).

The experimental results are compared with predictions of two theories, and the
experimentally obtained shear band spacings (0.9 mm (SS) and 1 mm (Ti)) are in good
agreement with the predictions of Grady-Kipp(1.7 mm (SS) and 1.8 mm (Ti)) and Ockendon-
Wright(0.3 mm (SS and Ti)). It is felt that the OW theory predicts better the shear band
spacing if it is mainly determined by the initiation stage, whereas the propagation is affected
by the momentum diffusion in the GK approach. Prior to the onset of localization,
momentum diffusion is absent, and its role is only fully felt in the propagation stage. The
trajectories of the shear bands are modeled, enabling a prediction of the final configuration in
good agreement with observations.
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