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I CHAPTER 14

Dynamic Deformation and Failure

MARC ANDRE MEYERS
University of California, San Diego

14.1 INTRODUCTION

The word dynamic appears in the title of this chapter, but does not necessarily
imply high strain rates; there is a generality to the constitutive descriptions
that will be given. They really apply to plastic deformation in general, if we
incorporate the effects of strain rate. The reader will find a much more detailed
account of dynamic deformation and failure in Kolsky [1], Freund [2], Bai and
Dodd [3], and Meyers [4], among other sources. This chapter will expand on
some of the points that were briefly discussed in Professor Argon’s chapter
(Chapter 7). The reader is also referred to the classic monograph by Kocks et
al. [5], which presents the foundations of the thermodynamics and kinetics of
slip.

As the rate of material deformation increases, the following effects play an
increasingly important role:

1. Mass Inertia. This leads to the propagation of elastic, plastic, and shock
waves.

2. Thermal Inertia. The thermal diffusion distance decreases as the time
for deformation decreases, leading to pronounced temperature inhomoge-
neities within the material. This can lead to shear localization, which is
treated in Section 14.6. »

3. Thermal Activation and Viscosity. The response of dislocations, the pri-
mary carriers of plastic deformation, to applied tractions is determined by
their ability to overcome obstacles. At lower velocities, lattice obstacles
such as other atoms (Peierls—Nabarro barriers) interstitials, substitution-
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490 DYNAMIC DEFORMATION AND FAILURE

als, and forest dislocations, act as barriers. At higher propagation veloc-
ities, phonon and electron viscosity may determine the response instead.
Relativistic effects on dislocations become important when their velocity
approaches that of elastic waves.

The flow stress is thus dependent on temperature and strain rate. Alternative
deformation mechanisms (such as twinning and phase transformations) can also
play an important role.

We will not deal extensively with mass inertia in this chapter. It suffices to
state Newton’s conservation of momentum equation for an element of mass:

doy _  Fu
a—"xjf-=p a_:; (14.1)

where g;; is the stress tensor and u; is the displacement vector.

The solution of this differential equation depends on the boundary condi-
tions and on the material constitutive response. The chapter by Rice (Chapter
3) provides some additional information. Solutions for elastic waves are given
below for a uniaxial stress case [Eqgs. (14.2) and (14.3)] and for the uniaxial
strain case [Eq. (14.4)]; v; and v; are longitudinal and shear wave velocities,

respectively:
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The velocities of plastic disturbances are given in terms of the slope of the
stress—strain curve at the specified strain:

1/2
Upt = ( do/de ) (14.5)
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Shock waves, which have amplitudes significantly exceeding the flow stress
and exist in a state of uniaxial strain, have propagation velocities approximately
equal to elastic longitudinal wave velocity [Eq. (14.4)]. The effects of shock
waves in metals are discussed in Section 14.5. The infinite complexity of the
morphological characteristics of deformation and failure can be rationalized by
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the interaction of these effects with the structural characteristics of materials.
Prominent structural characteristics are:

Bonding: metallic, covalent, ionic

Atomic structure: crystalline, amorphous, quasi-crystalline, polymeric, and
SO on.

Microstructure: grain size, grain boundary structure, phase transformations,
heat-treatment effects, compositional effects, and so forth.

Mesostructure: hierarchical structures, composites, synergistic systems

It is known that plastic deformation and strength of materials are a function
of temperature. Figure 14.1a shows a plot for tantalum with temperature on
the abscissa and yield stress on the ordinate [6]. As the temperature increases,
there is a decrease in yield stress leading to a plateau. Similarly, as the strain
rate is increased, the flow stress of tantalum increases (Fig. 14.1). Tantalum
is body-centered cubic (BCC); face-centered cubic (FCC) metals in general
exhibit a more gradual strain rate and temperature dependence. Figure 14.1c,
d shows the effects for copper, a typical FCC metal. The yield stress (at a
plastic strain of 0.001) shows very low temperature dependence. The strain-
rate dependence up to 103 s7! is not significant. At this point, new deforma-
tion mechanisms and/or obstacles become operative and a marked change is
observed. This will be discussed later. Researchers have tried for many years
to find equations that describe this overall behavior, and to understand, from the
fundamental behavior of dislocations, how this occurs. Figure 14.2 is an exam-
ple of a Weertman—Ashby map. Shear strain rate is plotted on the ordinate, and
homologous temperature is on the abscissa. There are several regions labeled
where different phenomena are controlling plastic deformation. In Chapter 13,
Professor Weertman covers high- and low-temperature creep in great detail.
This chapter will focus on obstacle-controlled and drag-controlled plasticity, as
well as mechanical twinning. At even higher strain rates, there are relativistic
effects on dislocations, and this will also be discussed. We will not consider
processes where diffusion plays a significant role.

The basic objective of researchers in the mechanical behavior of materials
has been to develop an equation of the form

de
o =f<e, Z’T> (14.6)

This equation of state (unfortunately, or fortunately for researchers!) is not pos-
sible since these are irreversible processes that are path-dependent. One has to
have an equation of the form
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d
o=f (e, d—j, T, deformation history) (14.7)

The addition of deformation history represents a whole range of phenomena
(including gradient terms). Throughout this chapter tensors and other complex
entities will not be used. Equivalent (or effective) stresses and equivalent (or
effective) strains are often used and are given by the following equation:



14.1 INTRODUCTION 493

400
<
350
590 Experiments e = 0.167
= 250
&
=
S 200
g
& 450 ‘ Experiments € = 0.033
100
L""_—"—-O—-O——o—o__o Zerilli-Armstrong model [13]
50 | Experiments e = 0.001 T &-o00
0
0 100 200 300 400 500 600 700
Temperature (K)
(c)
400 T T T T
Strain = 0.15
300+ —
<
[+
2
a
|4
&
200 |~ —
100 | | 1 |
1075 1073 107! 10! 108 10°
Strain rate (s™1)
d)
Figure 14.1 (Continued.)
V2 2 2 2172
Oett = —— [(01 — 02)* + (02 — 03)" + (01— 03)°] (14.3)

2

The equation is somewhat of a summation of the shear stresses to which a body
is subjected; the terms (o — 02)/2, (02— 03)/2, and (g, — 03)/2 represent shear



494 DYNAMIC DEFORMATION AND FAILURE

TEMPERATURE, °C
200 O 200 400 600 80O 1000 1200 1400 1600
1 1 | 1 1)

10° s " Titonium]
<ldeal strength: oy /10! Titanium
= rog-com;:jﬁ ———d=100um
s Plasticity=S=Si0=0F—o—"0 =

10 ——
[ ——
! B o1

Q Phase /) BPhase \0

102 |- (Her

7!0
Sa Obstacle
w |o-2 _c?ntrolled p / N
= plasticity ower law Creep ress
= / )
n: (H.T.Crce/p)/ (L{l’.y levels
2. ’ (05 /6)
a<: 104 |-
» o
2 s
x
(721
1078 |-
/. )
( '?sDiffusionol flow
o 0.2 0.6 0.8 1.0

HOMOLOGOUS TEMPERATURE, T/T,

Figure 14.2 Weertman-Ashby map for titanium. (Adapted from H. J. Frost and M. F.
Ashby, Deformation Mechanism Maps, Pergamon Press, New York, 1982, Fig. 17.4.)

stresses on three orthogonal planes. The effective shear strain to which a body
is subjected is, similarly, given by

2
et = —— [(e1 - €2)° + (€2~ €3)2 + (€ — €3)2]'/2 (14.9)

As a first approximation, the use of Ocff and ec¢r enables us to reduce the com-
plex stress—strain state to two scalars.
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14.2 EMPIRICAL (ENGINEERING) CONSTITUTIVE EQUATIONS

There are many engineering correlations, that have been proposed by differ-
ent investigators. These equations are very important because they are actually
used in computer codes to represent material behavior. The Johnson—-Cook [7]
equation is the most popular, and it should be emphasized that it is a simple
curve-fitting procedure. The flow stress is

\ ¢ T-T, \"
o =(0g + Be )[l-i-.Cln _é;][l_(Tm—T,> ] (14.10)

where T, is the reference temperature and T, is the temperature at the melting
point. In this equation the first term is the work hardening, the second term is the
effect of strain rate on the flow stress, and the third term represents the effect of
temperature on the flow stress. The application of the Johnson-Cook equation
to iron and copper at different temperatures and strain rates is illustrated in
Figure 14.3. Variants of the Johnson-Cook equation have also been used. For
instance, Meyers et al. [6,8] used the following forms:

. T Y
a:(ao+Be")[l+Cloglo —:—] (T) (14.11)
0 r

o = (oo + Be™) [1 + Clogyo f—] e M- (14.12)

0

These forms are easier to integrate to calculate temperature rises. In some cases,
we may want to introduce a discontinuity in the yield—flow stress, to accom-
modate some marked change in mechanism, such as recrystallization and phase
transformation. The equation may take the following form, that was suggested
by Andrade et al. [9]:

a=(ao+Be")<1+Clog —:—)[1-(—;—"%—-) ]H(T) (14.13)
0 m— 4r

1
H(T) = 14.14
T = T =10 e/ @ ael (T (14.14)

where u(T) is a step function of temperature defined as

_JO forT<T,
“(T)’{l for T > T,
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response. However, they do not address the more fundamental questions: How
does plastic deformation take place, and how are the micromechanical processes
connected to global plastic response? This will be addressed in Section 14.3.

14.3 PHYSICALLY BASED CONSTITUTIVE EQUATIONS

A material responds to external tractions by one or more of the following mech-
anisms:

* Dislocation generation and motion (see Chapter 9 by Veyssiére)

 Mechanical twinning

‘'« Phase transformations (mainly displacive)

« Fracture (microcracking, failure, delamination)

* Viscous glide of polymer chains and shear zones in glasses (see Chapter
7 by Argon)

We will first concentrate on dislocations, by far the most important carriers
of plastic deformation in metals. In Section 14.4, we will describe mechanical
twinning, which can be very important in some cases.

The most important entity responsible for plastic deformation is the disloca-
tion. In order to have a physically based constitutive equation, it is necessary
to go to the dislocation, see how it behaves, and incorporate the dislocation
into a larger framework of continuum plasticity, which is then embedded into
a constitutive model. As a dislocation moves, it produces a unit shear displace-
ment b (Fig. 14.5). An assemblage of these dislocations that move on parallel
planes produce a shear strain that is given by the tangent of the deflection
(Fig. 14.5b). The mathematical representation of this process is very simple,
and an important equation called the Orowan equation, ensues:

Nb  Nb/
=t = —=— 14.18
v =tan 6 7 7 ( )
where N = the number of dislocations
b = Burgers vector
£= distance traveled by each dislocation
p = dislocation density
Using the fact that
N
=P (14.19)

the shear strain equation becomes
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Figure 14.5 Shear produced by passage of (a) one dislocation; (b) dislocation array.

v = pbl (14.20)

The Orowan equation is one of the most important equations in micromechan-
ics. This equation connects the movement of a dislocation [ to a plastic shear
strain v that the material undergoes. In a very simple paper, Orowan [12] pro-
posed a seminal idea that enables microstructurally based constitutive equations.
In Section 14.3.1, we will see how dislocations respond to applied stresses. In
Section 14.3.2 the Zerilli and Armstrong equations [13] will be given as well
as an equation proposed by Klepaczko [14] and the MTS model proposed by
Follansbee and Kocks [15a]. These equations share the same foundation of dis-
location dynamics and are based on the seminal work of H. Becker [15b] and
A. Seeger [15c]. Most of this section will be devoted to explaining how to
arrive at the above-mentioned equations, which all contain a number of con-
stants. Each of these equations has five or six parameters, and one cannot avoid
this complication. These parameters will be explained in terms of fundamental
dislocation motion. Nevertheless, they have to be experimentally obtained and,
from an “engineering” point of view, they do not represent a dramatic advance
over the simpler empirical equations given in Section 14.2.

14.3.1 Dislocation Dynamics

To start at the beginning, one must look at dislocation dynamics. Figure 14.6
presents the classic lithium fluoride results of Johnston and Gilman [16], where
the applied shear stress is on the abscissa and dislocation velocity is on the
ordinate. These experiments showed for the first time that as shear stress is
increased from the yield stress, the dislocation velocity also increases. At the
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Figure 14.6 Velocity of dislocations as a function of applied stress for lithium fluoride.
(Adapted from W. J. Johnston and J. J. Gilman [16], p. 132))

top of the plot is a horizontal line representing the velocity of shear waves,
which is approximately 3600 m/s [see Eq. (14.3)]. The data follow a curve
that could be extrapolated to intersect the shear wave velocity at an infinite
stress. After the work by Johnston and Gilman, numerous investigators stud-
ied different materials and found the same trend in their data (Fig. 14.7).
This plot can then be separated into regions of low, intermediate, and high
velocity. The low/intermediate cutoff is between 10~* and 10-2 m/s, and the
intermediate/high cutoff is between 10° and 102 m/s. It is thought that there
are different mechanisms that control the movement of dislocations in the dif-
ferent regions. In the low-velocity region thermal activation is the dominating
mechanism. The intermediate region is drag controlled, and in the high-velocity
region relativistic effects play a role. These three regions will be explained in
Sections 14.3.1.1, 14.3.1.2, and 14.3.1.3, respectively.

The first equation of dislocation dynamics proposed by Johnston and Gilman
[16], has the form

v o< 7 UKT (14.21)

Q is an activation energy term that provides the temperature dependence. After
Johnston and Gilman, other people tried to propose different equations. Stein
and Low [17] found their data to fit the equation
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U = Ug exp (——?_—) (14.22)

Rohde and Pitt [18] from Utah used the following expression for iron:

_ kT AH B(Ta_‘rl)
v= A Kexp( kT)exp[ T (14.23)

which is based on Eyring’s concepts of reaction rate and has both thermal
and stress exponential dependencies. Then Gilman came back in his book on
micromechanics [19] and stated correctly that his earlier equation predicted an
infinite velocity when the stress was infinite; he proposed the following modi-
fication:

v=uvi(1-e)y+uvie P (14.24)
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This equation has a limit as the stress goes to infinity. The velocity is equal to

v=ur+u) (14.25)

which is a more correct expression.

From the individual dislocation motion, it is possible to proceed to the
Orowan equation. If one differentiates Eq. (14.20) with respect to time, the
equation becomes (assuming, questionably, a constant dislocation density)

y = pbv (14.26)

where v is the dislocation velocity. Gilman touches on these equations in Chap-
ter 6 and discusses these aspects. If a three-dimensional analysis is used, a sum
has to be taken over the different slip systems, considering their relative orien-
tations (m, slip direction, and n, normal to slip plane) with respect to the stress
axis. The plastic strain rate tensor is

&= fhmt@nh, (14.27)
k=1

This enters into the realm of crystal plasticity, which is discussed by Anand
(Chapter 8).

A simplifying assumption regarding dislocation dynamics can be made so
that there are three regions of dislocation behavior (Fig. 14.8). There is a danger
of oversimplification, but it must be done in order to treat these phenomena in a
somewhat systematic way. The plot is of mean dislocation velocity versus stress,
and in the lower velocity region, velocity is governed by thermal activation.
Drag governs velocity in the intermediate region (it should be noted that the
slope between the intermediate- and high-velocity regions is equal to one). At
very high velocities relativistic effects come into play, as if there were a barrier
that these dislocations could not overcome (the sonic barrier).

14.3.1.1 Statistical Mechanics of Dislocation Motion*

In 1889 Arrhenius observed that there is an “activated state” intermediate
between reactants and products. He suggested that the reaction rate was con-
trolled by a rate constant &’ given by

K = Aexp( _,?TE" ) (14.28)

where A is a frequency factor and AE, is an activation energy for the process.
This equation was based on van’t Hoff’s equation describing the effect of tem-

t From J. Wark, unpublished results.



14.3 PHYSICALLY BASED CONSTITUTIVE EQUATIONS 503

____________________ —_———
SHEAR WAVE
VELOCITY at
10 GPa
. I
109
10°
(J
E —
3 \&-
g
z L
Qe
2
3 10—
@0
o
|6°J—
o
_ 1 | |
10" 10° 10 102

RESOLVED SHEAR STRESS, MPa

Figure 14.8 Schematic representation of three regions of dislocation behavior:
I—thermal activation; II—viscous glide; Ill—relativistic effects. :

perature on the equilibrium constant for reactions. However, the rigorous proof
for this equation is rooted in statistical mechanics and in Boltzmann statistics.
The movement of a dislocation requires it to pass through an “activated state.”
Quantum-mechanical calculations are required to calculate the exact shape of
the potential-energy barriers. We will present here, in a simplified manner. how
these concepts are derived. The Boltzmann law of energy distribution is the
most important equation of statistical mechanics. The basic premise is that
energy is quantized and that the smallest quantity is hv, where h is Planck’s
constant and » is the frequency of vibration of the oscillator.

We consider N dislocations which are arrested by obstacles. Each dislocation



504 DYNAMIC DEFORMATION AND FAILURE

ANAANNSNTES

ENERGY OF DISLOCATION, €

>
NUMBER OF DISLOCATIONS, n,

Figure 14.9 Boltzmann's distribution of energy states.

has a different energy level, and the energy levels are quantized. It can be shown
that the distribution of n; dislocations, at energy levels ¢;, is an exponential
function that is represented in Figure 14.9 and is given by

n; = Ae Bei (14.29)

This is the Boltzmann distribution. The terms A and B are parameters that
express the distribution. We consider each dislocation as distinguishable.

The probability that a dislocation has an energy equal to or greater than E
(the hatched region in Fig. 14.9) is given by

A J. e Pei
E -BE

PE= —S5——=¢ (14.30)
A J e Pei
0

We now introduce the fundamental postulate of statistical mechanics (it is
so important that Boltzmann had it engraved on his tombstone):

S=klnw (14.31)

where S is the entropy,  is Boltzmann’s constant, and W is the number of ways
in which N dislocations can be arranged:

N! N!

s
S -1 14.32
K mmimylngl - o T (14.32)
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Using Stirling’s approximation:

N
In 7 =1n N!—E Inm!=Nln N-N- > nln n,-+z n; (14.33)

Since N = n;
S
In W=--=Nin N—z niln n; (14.34)
But
n; = Ae e (14.35)
N= 2 n=A Z e B (14.36)
In nj=InA+1In e Pei
n; In n; = Ae”i(In A - Be;) (14.37)
S= k[Nln N-Y niln A- 3e,.]
=k(Nln N-NIn A+8 2 n,~e,~) (14.38)
Furthermore
2 niei= U (14.39)

S=k[N(n N-1n A)+BU]

=k \.N(ln A-ln A+ln 2 e*ﬁff>+ﬁul

=k LNln z e P +BU] (14.40)

We will now establish the value of k. From the first law of thermodynamics
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dU=T dS-PdV (14.41)
U
(ﬁ) =T (14.42)
as 1
(W) = (14.43)

We can make

05\ _[(as\[aB\ 1
(W)V" (%) (w) T (1449
3 -N Z eie~Pei
S i 2
3 = V +D miei~B Z nie; (14.45)

"’a_g == ne? (14.46)

Inserting (14.45) and (14.46) into (14.44)

as 2 1 1
50: (—U+U—ani6,~>72——2=kﬁ=T (14.47)

i

Hence 8 = 1/kT.
Substituting this into Eq. (14.30), we obtain

pE = Ae E/AT (14.48)

The probability that a dislocation has an energy greater than E is equal to this
expression. We assume that the dislocation will overcome the obstacle when
its energy exceeds the height of the obstacle, E. With this expression under our
belt and well understood, we can now proceed. We usually use AG to represent
the Gibbs free energy.

14.3.1.2 Thermally Activated Motion of Dislocations
First thermal activation will be discussed. Equation (14.49) (derived in Section
14.3.1.1) is embedded in many of the important phenomena in materials science:
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AG
P = €xXp (—7> (14.49)

where p is the probability that a dislocation will overcome a barrier, k is Boltz-
mann’s constant, and AG is the activation energy for the process. All the mod-
ern constitutive equations are really based on this expression. Basically, it says
that, given a barrier of a height AG, the probability that an entity (in our case,
a dislocation) will jump over the barrier is p. As the temperature goes up, the
probability increases because thermal energy will provide the “kick” that allows
the entity to jump over the barrier. The frequency of successful jumps is related
to the probability by (p = v1/vo)

AG
Vi = voeXp (_ﬁ_> (14.50)

Kocks et al. [S] authored a classic paper or thermally activated dislocation
motion. They have the following expression for the frequency of vibration of
a dislocation of length ¢:

vb
Vo= 7 (14.51)
where » is the frequency of vibration of an atom. One can see that it is similar
to the vibration of a string, where frequency depends on string length. Atoms
vibrate at about 10'3 per second (s~1). Since the dislocation is longer, it will
vibrate at a much lower frequency, and the actual frequency depends on the
length of the dislocation. For £= 250b, a reasonable value for deformed metals,
» = 10'0 57!, The dislocation spacing 4 can be related to the density p:

4= p~ /2 (14.52)

The average time a dislocation takes to move from one barrier to another can be
divided into a waiting time and a running time. A dislocation encounters many
different types of barriers (Fig. 14.10). There are smaller barriers such as vacan-
cies, substitutional atoms, and small-angle grain boundaries. There are also big
barriers like precipitates, inclusions, voids, and other dislocations. These barri-
ers are usually divided into two classes. The smallest one of the barriers is the
atom itself because as the dislocation moves, individual atoms switch positions.
These are called Peierls—Nabarro barriers, which are shown in Figure 14.11.
The dislocation in Figure 14.11 (1) will move to the next location, in Figure
14.11 (3), but in order to do that it has to overcome the barrier in Figure 14.11
(2). The plot shows force versus distance for the movement of a dislocation. The
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Figure 14.10 Schematic representation of lattice obstacles to dislocation motion.
(Adapted from O. Vahringer, private classnotes.)

force that must be applied on a dislocation first goes up and then goes down.
The value of the peak is the Peierls—Nabarro stress, and it is more complicated
than it looks. The dislocation does not move forward as a rigid rod; rather, a
kink having dimensions of b is formed, and the two sides move parallel to the
dislocation line. This is called the Seeger kink-pair mechanism and is shown in
schematic fashion in Figure 14.12. The individual kink velocity is vy, whereas
the forward velocity of the dislocation is vp. In Chapter 6 Gilman describes
how the Peierls-Nabarro stress varies from material to material.

The biggest barrier would be an inclusion or a void. And again we are going
to make a number of assumptions. One intermediate barrier (a dislocation) is
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Figure 14.11 Periodic Peierls—Nabarro stress encountered by dislocation.

shown in Figure 14.13. This is called a “forest” because the barrier dislocations
are standing up and the moving dislocation is slicing right through the “tree”
dislocations. As it cuts through them, it creates kinks and jogs that slow it down.
All of these barriers can be put into an analytical framework and defined by an
equation that relates the strain rate to the stress. We shall do this next.

When a dislocation is traveling as shown in Figure 14.13, it will run very
fast until it hits the first forest barrier. It runs again, hits the next barrier, and

Figure 14.12 Overcoming of Peierls barrier by Seeger kink-pair mechanism: (a) orig-

inal straight dislocation; (b) dislocation with two kinks: (c) kinks moving apart at veloc-
ity ug.
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Figure 14.13 “Forest” of dislocations that act as barriers to moving dislocation.

'so on. Figure 14.14 is a plot of time versus distance at a certain stress level for
such a scenario. At the stress level o, the dislocation will run, and then come to
a barrier. Many attempts will be made before it makes it over and then the pro-
cess continues. An average dislocation velocity is obtained based on this stop and
start sequence. If the stress is increased, the dislocation is aided in its jump and
the waiting time ¢,, is decreased. This is indicated by ¢, in Figure 14.14.

The equations that express these ideas start with

At=t,+1t, (14.53)

where ¢, is the running time and 1, is the waiting time. One can neglect the
running time by saying the dislocation runs ¢, < t,,. The analogy is La Jolla
(CA) traffic. The waiting time at the traffic lights greatly exceeds the driving
time, and the total travel time can be approximated as the average time at lights
multiplied by the number of lights. The equation for the waiting time is

TIME

DISTANCE

Figure 14.14 Schematic representation of dislocation motion at two stress levels;
notice stop-go sequence.



14.3 PHYSICALLY BASED CONSTITUTIVE EQUATIONS 511

fy= — (14.54)

ty = —1— exp(£> (14.55)

The Orowan equation [Eq. (14.26) with an orientation factor M] can now be
applied to relate the strain to the movement of the dislocations. The result is

1
dy _Ay_ 1,24

dr At M7 ar (14.56)
When Eq. (14.55) is substituted, the strain rate becomes
dy _ vopb Al AG
i i ex T (14.57)

where vo = frequency of vibration of the dislocation
p = dislocation density
b = Burgers vector
A/ = distance between dislocation barriers
M = orientation parameter

The terms before the exponential term can be grouped together and called y:

. AG
‘Y—’YoexP[‘TT—] (14.58)

By solving for AG, one can obtain the equation
AG = kTln "fy—" (14.59)

We have to introduce the stress now. It comes in through the height of the
barriers. Figure 14.15 shows a schematic view of these obstacles. As the dislo-
cation moves along the abscissa axis, it passes over schematic little protruding
barriers as it climbs up the large one. The obstacles can be divided into long-
range obstacles (big hill) and short-range obstacles (little “pimples”). This is
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Figure 14.15 Different barriers encountered by dislocation as it moves.

a simplification of reality in order to make analysis easier. The stress can be
separated into two components: a temperature-independent stress, og; and a
temperature-dependent, or effective stress, o* [not to be confused with o in
Eq. (14.8)].1

o=0g+0" (14.59b)

Figure 14.16 shows a general barrier configuration. These are short-range bar-
riers because thermal activation can aid dislocations in overcoming them. The
barrier is shown at various temperatures; as the temperature increases, ther-
mal energy (the hatched portion) is increasingly provided and the effective bar-
rier height decreases. The total energy of the barrier is the area under the bar-
rier curve; at T it is AGo. As the temperature increases, the thermal energy
increases so that the effective energy barrier at T is

AG = AGy - AG, (14.60)

Now, how can this be expressed analytically? By integrating over the total bar-
rier height, an expression is obtained for the energy. The barrier height, AG, is
equal to

Fo
AG = AGp - NF)dF (14.61)
Fi

in which AGy is the activation energy at 0 K and \(F) is the barrier width; F;
has values of Fy, F», and F3, at T}, T», and T3, respectively. This equation can

t This concept was introduced by Seeger [15c}]; a detailed thermodynamic theory was developed
by Conrad and Wiedersich [15d].
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Figure 14.16 (a) Representation of thermal assistance to the overcoming of obstacles;
(b) Effect of temperature on stress required to move dislocations.

be set equal Eq. (14.59a) to get

¥ Fo
kTIn -'-y"— =AG, - NF) dF (14.62)

Fi

The height of the hatched area is Fg— F;, which is a function of T. At Ty, F * =
Fo—F). In this equation F refers to the forces acting on the dislocation. These
forces per unit length can be expressed in terms of the applied stress, by using
the Peach-Kochler equation (see Chapter 9 by Veyssiére):

F=1b (14.63)
in which 7 is the shear stress and b is the Burgers vector. This equation can
be inserted into Eq. (14.62) to obtain a relation between stress, strain rate, and

temperature. The procedure for this begins with the force equation. To this force
equation a length term must be added

F=1b2* (14.64)

and the £ is equal to the distance between barriers. Figure 14.17 explains the
reason for adding this extra term to the equation. These barriers can be consid-



514 DYNAMIC DEFORMATION AND FAILURE

Final position
(after barrier)

Barrier

Initial position
of dislocation

Figure 14.17 Dislocation overcoming obstacles; two positions shown.

ered a forest of dislocations or point defects and the force acts along the entire
dislocation line. Substituting Eq. (14.64) we have

Fo

70 70
NF) dF = J' Nr)bL* dr = be* J A7)dr (14.65)
F; Ti Ti

where F; and 7; represent the values at the bottom of the hatched area in Figure
14.16. The only part that has not been defined so far is A. It depends on the
type of barrier that is assumed. Figure 14.18a shows three different types of
barriers that could be assumed; each leads to a different corresponding consti-
tutive equation. We can also define = 7o — 7;. For a rectangular barrier, \ is
constant so the integral becomes

70
be*\ J dr = b8 \(ro - 1;) = V1~ (14.66)

The variable V is the activation volume of the barrier, defined as
V=Ab (14.67)

where A is the activation area. It is the area swept by a dislocation from the
time it enters the obstacle to the position where it is past the obstacle (see Fig.
14.17, hatched area). This area is thus related to the width of the obstacle A
and the distance between the obstacles £*. As an approximation

A=ne* (14.68)

Figure 14.18a shows that the base stress level is 7¢; so 7* can be written as
(t-71¢) and c*=0- o . This can be substituted back into Egs. (14.62), (14.66),
and (14.65) to get
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Figure 14.18 (a) Different idealized shapes of obstacles. (b) different obstacle shapes
and corresponding values of p and g (Adapted from Kocks et al. [5]).
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Yo
kTIn 7 =AGy - V(r-16) (14.69)

The constitutive equation can be obtained by solving for ¢ to obtain

+—In — (14.70)

In Eq. (14.70) the stress has been represented as a function of temperature and
strain rate based only on fundamental parameters. This was the original form
proposed by Seeger [15c]; it predicts a linear decrease of ¢ with T, because
of the rectangular barriers. He later used a more general, exponential barrier
form [164, 165]. In 1968, Ono [166] compared different shapes of the barrier:
square, triangle, parabola, exponential, sine.

Remember that there are different barrier shapes that can be considered and
one would assume that different shapes would give different constitutive equa-
tions. Kocks et al. [5] proposed a generalized equation for these shapes with
two parameters, p and g. They said that their equation could fit any shape. Their
equation is of the form (note that we switched from shear stresses to normal
stresses for convenience):

s \P1?
AG= AGo[l - (——-) ] (14.71)
(0]

Professor Argon mentions these equations briefly in Chapter 7; hence they
should look familiar to the attentive student. The generalized constitutive equa-

tion has the form (note that we switched from shear strains to longitudinal
strains)

: P19
kTIn <0 = AGO[I - (i) ] (14.72)
€ (o))

based on the physical processes of slip occurring in the material. Figure 14.185
shows the various shapes of barriers considered by Kocks et al. [5] and the
respective values of p and g. These values also determine the yield stress versus
temperature behavior. Follansbee and Kocks [15] found the best fit, for BCC
materials, for p = % and g = % Ono [166] and Kocks et al. [5] state that this is
the best fit for most cases. Meyer [20] presents a tabulation of the best values
for p and q.

It is possible to make a qualitative illustration of the strain-rate and temper-
ature dependence of the flow stress of a metal by considering both long-range
(athermal) and short-range (thermal) barriers, and an effective and athermal



14.3 PHYSICALLY BASED CONSTITUTIVE EQUATIONS 517

a

2 %

o

% Diffusional effects

s +beee___ (Creep) )

= o7 T ;

el P NN

To!") To@) 153 TEMPERATURE , K

Figure 14.19 Thermal (o¢) and athermal (o) components of stress and their effect
on temperature and strain-rate dependence of flow stress.

component of flow stress, given by Eq. (14.38). The athermal portion of the flow
stress shows a very small temperature dependence, equal to that of the elastic
constants (e.g., G); this is seen in Figure 14.19. The effective stress, governed
by an equation like Equation (14.72), shows a much more drastic dependence.

14.3.1.3 Drag-Controlled Dislocation Motion
As the velocity of dislocation increases, different mechanisms slow down its
motion. At the intermediate velocities of Figure 14.8, a region exists that has a

slope of one on the log-log plot. This is called the drag regime, where New-
tonian viscous behavior is assumed, and can be expressed as

F=Bv (14.73)
Then F is transformed into 7b and
7b = Bv (14.74)

Using the Orowan equation (Eq. 14.26), with an orientation factor M;

b= EMy (14.75)
pb
and the values
o
=7 and y=2e (14.76)

the constitutive equation is found to be
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o= — ¢ (14.77)

The viscosity coefficient B has been characterized in different forms, and a
common one is

By
Hirth and Lothe [33] use the form
bw
B= 100; (14.79)

where vy is the velocity of an elastic wave and w = 3kT/a3. Depending on
the temperature, there are two different drag mechanisms that can affect a sys-
tem. Parameswaran and Weertman [21] performed experiments in which they
measured the damping constant B as a function of temperature for aluminum
(Fig. 14.20). At very low temperatures, electron viscosity seems to be doing the
damping. At higher temperatures, phonons are prominent because the vibration
amplitude of the atoms becomes very important and phonon damping is the
prominent mechanism.

1073
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Z 00 THEORY \
E \\ Pt
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Figure 14.20  Contributions of electrons and phonons to total viscosity. [Adapted from
Parameswaran, N. Urabe, and J. Weertman, J. A. P. 43 (1972), 2982.]
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14.3.1.4 Relativistic Effects

Relativistic effects, originally proposed by Frank [167], occur when the sound
velocity is approached. No derivations will be carried out here, but the result
for the total dislocation energy is¥

Ur=Up+U;= %9— (14.80)

and both the potential energy and the kinetic energy increase with the velocity
of the dislocation. The potential-energy term looks like

Gb? R 1+p?

Up— -'E— ln(-;o—) 2B (1481)
which is taken from the work of Weertman [22]. In this expression 3 is equal
to

2\
B= (1 - 7) (14.82)
U.\'

As the shear wave velocity is approached (v; is the shear wave velocity), B
approaches zero, and the total energy goes to infinity. The stress o3 around an
edge dislocation is shown in Figure 14.21. Figure 14.21a represents o3 at rest.
As the dislocation accelerates, the stress field is compressed, and the energy of
the dislocation goes to infinity. Figure 14.21b shows the stress field for v/vs =
0.5; Figure 14.21¢ shows v/v; = 0.995. This explains why the dislocation does
not want to travel at the sound velocity. The energy of the dislocation between
0.8 and 0.9 goes up as we approach us. This is seen in Figure 14.22; of the
shear wave velocity, the effects are very unimportant, but between 0.8 and 0.9,
it kicks up. We need an infinite amount of energy to drive a dislocation at those
velocities. This represents the region of relativistic effects. There have been
suggestions by Weertman [22] of supersonic (v > v;) and transonic (Vs < U < Uy)
dislocations.

14.3.2 The Zerilli-Armstrong Equation

Zerilli and Armstrong [13,23] proposed two microstructurally based constitu-
tive equations that show an excellent match with experimental results. They
based their model on the framework of thermally activated dislocation motion
described in Section 14.3.1. They analyzed the temperature and strain-rate
response of typical FCC and BCC metals and noticed a significant difference
between these materials. The BCC metals exhibit a much higher temperature
and strain-rate sensitivity than the FCC metals (see Fig. 14.1).

+ A very comprehensive treatment is given by Weertman and Weertman [170].
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Figure 14.21 Effect of velocity on stress field (of ¢3) of edge dislocation; (a) v/us
= 0; (b) v/us = 0.5; (c) v/vs = 0.995.

Zerilli and Armstrong [13,23] noticed that the activation area (which rep-
resents the area swept by the dislocation from the beginning of the obstacle
to the end of the obstacle) varies in FCC materials in some fashion, while
for BCC materials it is constant. What does this mean? In BCC metals, the
Peierls-Nabarro stresses determine the flow stress. For FCC materials, the for-
est dislocations are the rate controlling mechanism. The dislocation density
increases with plastic deformation and therefore the activation area (related to
the spacing between forest dislocations) decreases. They separated the behavior
of FCC materials from the behavior of BCC materials, and were able to come
to rather simple constitutive equations that incorporate these differences. Typi-
cal BCC metals are iron, tungsten, molybdenum. nobium, and tantalum. which
have strong temperature and strain-rate dependence. Typical FCC metals are
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copper, gold, and aluminum, which have a low temperature dependence of the
flow stress, and a low strain-rate dependence. The activation area is given by

[see Eq. (14.68)]

Ap =N

(14.83)

We know that the barriers are the dislocations, for FCC metals. If we have
dislocations barriers with spacing £*, they are related to the dislocation density

by [24] [see Eq. (14.52)]

I

1
p -ZTZ_
From the Orowan equation [see Eq. (14.20)]

1
= — pbl
€ Mp

If [ is assumed constant (a rather drastic hypothesis), then

_Me
P= bt

Hence

(14.84)
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be \ 2
A=)\Z*=)\<ﬁ) 6~l/2
We end up with this constitutive equation for FCC metals:

0" = C2e" exp(-C3T + C4Tn ¢) (14.85)

Equation 14.85 contains terms that account for work hardening, temperature,
and strain-rate effects. This is only for the thermal portion of the flow stress.
The total flow stress is equal to the thermal portion, which is given above, plus
the athermal portion, and the grain size effect (Hall-Petch equation, where D
is the grain size):

0=0g+0" +kD'/ (14.86)

For the BCC, Zerilli and Armstrong [13] assumed that the activation area was
constant because the area swept by overcoming the Peierls—Nabarro barriers is
independent of strain. The distance between the atoms does not change. Then
one arrives at this equation, for BCC metals:

0" = Clexp(-C3T + C;T'n &) (14.87)
and
0=06+C1exp(-C3T + C4TIn ¢) + Cse" + kD12

Figure 14.23 shows Zerilli-Armstrong predictions for copper and iron, proto-
typical FCC and BCC metals, respectively. The higher strain-rate and tempera-
ture dependence of the BCC structure are evident in the plots. These plots were
generated from parameters provided by Zerilli and Armstrong [13]. It should
be noted that we still need to experimentally obtain C, C3, C3, Cy4, and Cs.
Hence, the constitutive equation is still rooted in experiments. Notable differ-
ences between J — C and Z - A are:

1. J - C assumes a linear increase in flow stress with the logarithm of strain
rate. We have direct and ample experimental evidence showing that this
is not correct; at strain rates of 10 s~! and above (especially for BCC
metals) substantial deviations occur.

2. The different effects (work hardening, strain-rate hardening, and thermal
softening) are multiplied by each other in J - C, whereas they are additive
in Z—-A. BCC metals, where the stress—strain curves are translated upward
and downard by temperature and strain rate changes are better represented
by the Z — A constitutive equation.
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Figure 14.23  Zerilli-Armstrong prediction of temperature and strain-rate dependence
of typical BCC (Armco iron) and FCC (copper) metals.

14.3.3 The Mechanical Threshold Stress Model

Another model that is commonly used, is the one developed by the group at Los
Alamos; it is called the mechanical threshold stress (MTS) model. This shape
of the barrier is determined by p and g that Kocks et al. [5] used to describe
for a general barrier. The MTS model often uses p equal to 5 2 and g is equal to
,, since this provides a good fit to the experimental results for many metals.

o \'_(_ o0 \° kT &\
(G(T)> _<G(T)> [1_(—019380 In T) (14.88)

where we have the stress divided by the shear modulus, which is temperature-
dependent. T is the temperature; go is a normalized form of AGy; and g is the
threshold stress, which is the stress required to plastically deform a material at
zero degrees Kelvin (in the absence of thermal activation).

We must discuss an additional complication now. If there were no strain-rate
dependence of work hardening, we would have the situation depicted in Figure
14.24a. The flow stress, at a fixed strain +y, is a function of the strain rate only.
If a test is carried out up to A at vy, and the strain rate is changed to vy,, the
flow curve will follow path BC, which is characteristic of 7,. A return to v,
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will bring the response back to D on the original stress—strain curve. On the
other hand, if the work hardening is dependent on strain rate, the change in
strain rate, at yr, will switch the response from A to B’, and work hardening
will proceed along B’C” (see Fig. 14.24b). The strain hardening dependence of
strain rate has been defined by Klepaczko [14] as

Ny = —ATh (14.89)

log -
Y1 T,yr

~where M, is the strain-rate sensitivity of hardening, and expresses the fact that
the material work hardens differently at different strain rates. If A, = 0, we
have the situation of Figure 14.24a. The evolution of the structure is not the
same at low and high strain rates. This strain rate dependence of microstructural
evolution is related to the immobile and mobile dislocation densities. As the
strain rate changes, the relative values of p; and p,, (the immobile and mobile
dislocation densities, respectively) change, leading to different total densities
and, as a corollary, different flow stresses. Klepaczko [14] expressed the total

dislocation density p as the sum of the mobile dislocation density p,, and the
immobile dislocation density p;:

T T Y2
(6]
Y2 !
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71 7 B’
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? |
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] |
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(a) )]

Figure 14.24  Effect of strain rate on strain hardening: (a) material exhibiting no strain-

rate sensitivity of strain hardening; (b) material exhibiting strain-rate sensitivity of strain
hardening.
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P=pi+Pm (14.90)

Then, he expressed the total shear stress 7 as the sum of the athermal and ther-
mal components:

1 T, Sy = 76181 Dy +7 17, T, Si(1, Dly (14.91)

where the S; are the internal variables, which are a function of strain rate and
temperature. The principal internal variables are the mobile and immobile dis-

location densities. The first (athermal) component of stress can be given by the
Taylor equation:

76 = 01Gb(pi + pm)'/*

For the thermal component of stress, on the other hand, the rates of dislo-
cation generation and annihilation are strain-rate- and temperature-dependent.
Klepaczko [14] developed analytical expressions for the change in mobile and
:mmobile dislocation densities with strain, dp;/dy, dpm/0Y, and incorporated
these effects into the thermal component of the stress. This leads directly to
predicted responses in line with the results of Figure 14.24. The MTS model
takes the strain-rate dependence of microstructural evolution into effect and
therefore represents, at this stage, the most advanced representation of the con-
stitutive behavior of metals. The flow stress has to be established, at each level
of plastic strain, with the proper evolution laws. One does not have a straight-
forward manner of obtaining the work hardening. It is a function of the prior
evolution of the substructure, which is a function of e, €, and T.

14.4 MECHANICAL TWINNING

14.4.1 Mechanisms of Twin Formation

The crystallographic aspects of twinning will not be discussed here. It is known
that mechanical twinning and slip are competing mechanisms and that mechani-
cal twinning is favored at low temperatures and high strain rates. Mechanical
twinning requires dislocation activity, and it is generally accepted that microslip
is required for twinning to occur. There are a number of monographs exclu-
sively devoted to mechanical twinning, including the reviews by Christian and
Mahajan [25] and Reed-Hill et al. [26], which describe the phenomenon of
twinning in great detail. In terms of the dislocation theory, several mechanisms
have been proposed for deformation twinning formation. One very well-known
mechanism is called the “pole mechanism.” A partial dislocation approaches a
tree dislocation that has, at least partially, a screw character. The atomic planes
form a ramp around the screw or partially screw dislocation. The free disloca-
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Figure 14.25 “Pole” mechanism for twinning.

tion serves as a pole for the spiral ramp. When the partial dislocation meets
the pole dislocation, the leading partial dislocation will move a plane up (Fig.
14.25b), and the other arm will move a plane down. The two arms, thus, will
move in spirals around the pole dislocation. Eventually, one will have moved
a partial dislocation through all the planes in succession and, thus, one will
have a deformation twin. Figure 14.25¢ shows the process, after the disloca-
tion has spun around the pole several times. The length of the twin is limited
by the lateral barriers (in this case, grain boundaries). One can therefore envis-
age how a lenticular twin is produced. Notice that the bottom portion of the
twin in Figure 14.25¢ is produced in the same manner, except that the other
arm of the partial dislocation produced it, rotating in the opposite sense. This
is the pole mechanism proposed by Cottrell and Bilby [27] for BCC metals and
extended by Venables [28] to FCC metals. The principal deterrent to the pole
mechanism is the maximum rate of growth predicted by this model; it is of the
order of 1 m/s. This is about three orders of magnitude below values reported
by Bunshah [29] and Takeuchi [30]. Takeuchi found that a twin propagated at
2500 m/s in iron, and that this velocity was virtually independent of temper-
ature in the interval —196 to +126°C. The latter observation is very important
and indicative of the fact that growth is not a thermally activated process. Fig-
ure 14.26 shows the temperature dependence of the twinning stress for Fe, FeSi
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Figure 14.26 Illustration of low temperature sensitivity of twinning stress.

and Zr. The temperature has only a mild effect, in contrast with Figure 14.1.
Two strain rates were used for iron: 107> and ~10° s™!. This increase in the
strain rate by six orders of magnitude resulted in only a 30% increase in the
yield stress. In contrast, the yield stress (for slip) increases by over 80% in the
same range. Takeuchi [30] measured the twinning propagation velocity in iron
at 77, 301, and 400 K and found that it was insensitive to velocity and equal

to approximately 2.5 mm/pus. This corresponds approximately to the velocity
of shear waves along [110]:

_Ca\ 12
oy = (9‘_}0&> —247mm/us (¢ = [110])

Cas \ 2
Vg2 = (——p—) =3.70 mm/ps (¢ =[001]) (14.92)

Hornbogen [31] suggested that the propagation of twins in FeSi alloys occurs
at such a rate as to generate shock waves. It is the velocity limitation that led
Cohen and Weertman [32] to propose a much simpler model for FCC met-
als, involving the production of Shockley partials at Cottrel-Lomer locks and
their motion through the material. The velocity of propagation of a twin is in
this case simply established by the velocity of motion of the Shockley partials.
Hirth and Lothe [33] proposed a yet simpler model in which the dislocations are
simply homogeneously nucleated; while the stress required to homogeneously



528 DYNAMIC DEFORMATION AND FAILURE

= “—(113)
T = - (113)
Es 4= “« (132
- +
TWIN 4+ 1
L
- — L[]
i 4
e =
T
(a)
Emissary
. | dislocations
- -_--_J.U.J)
1
r b
Lo+ [
-3 (]
W+ L)

(b)

Figure 14.27 (a) Formation of twin in BCC crystal by successive formation of loops
on (112) planes; (b) decrease of twin boundary energy by decomposition of dislocations
and formation of emissary dislocation.

nucleate the first dislocation is of the order of 10% of the shear modulus, the
subsequent loops would require stresses that are much lower (1% of G). This
“homogeneous nucleation” concept was forwarded first by Orowan [34].

The mechanism of twin formation proposed by Sleeswyk [35] for BCC mate-
rials is phenomenologically identical to that of Cohen and Weertman [32] for
FCC materials.

The mechanism proposed by Sleeswyk [35] is shown in Figure 14.27. Loops
of é [111] dislocations on successive {112} planes form, by their expansion, the
deformation twin. The thickness of the twin increases by the creation of new
loops along {112} planes. When the number of loops exceeds 40. dislocation
reactions are thought to occur along every third {112} plane. The following
dislocation reaction was postulated by Sleeswyk [35]:

1) — K11y - Ky

The %(lll) dislocation is emitted ahead of the twin and becomes an “emissary”
dislocation. These dissociations are shown in schematic fashion in Figure 14.27.

Mahajan [36] carefully studied the crystallography and dislocation config-
urations in twinned Mo/3.5Re alloy by transmission electron microscopy. His
observations seem to support Sleeswyk’s model over that of Cottrell and Bilby.
The initiation of twinning seems to occur by the dissociation of a % (111) screw
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dislocations into three % (111) dislocations on adjacent layers. The parallel
movement of these dislocations produces a three-layer twin. The broadening
(increase in thickness) is accomplished by additional dissociations on parallel
planes.

14.4.2 A Constitutive Equation for Twinning

A simple, yet effective, constitutive description of twinning will be given here.
It was proposed by Meyers et al. [37]. There are other equations, developed
by Armstrong and Worthington [38] and Ogawa [39]. The key and common
factor of these models is that a high local stress is required for the initiation of
twinning. We will not use the term nucleation since it implies a thermodynamic
process in which there is a change in chemical equilibrium. The dislocation
pileup is recognized, by many researchers, as being capable of generating these
stresses. We assume, further, that the critical rate controlling mechanism is the
initiation stage. This is because propagation, as seen in Section 14.4.1, can occur
at sonic velocities, and leads to times that are on the order of

d 50x107°6

_ -8
5 = 25w D 20x107s

t=

where d is an estimated grain size (~50 pm). Except at the shock front, where
the rise times of the wave is in the order of 1078 s, we do not have such short
time limitation imposed of twinning.

We consider the dislocation pileup, created by a Frank-Read or a Koehler
source as shown in Figure 14.28. We apply the dislocation dynamics equation
from Johnston and Gilman [Eq. (14.21)] to the individual dislocations forming
the loops:

v=Ar"e  YRT (14.93)

The distance from the source to the barrier (in this case, a grain boundary) is L.
The time required for an individual dislocation to travel from source to barrier
is

L
= —
v

The number of dislocations required at a pileup to generate the stress initiation
7 is n*. Thus

7= n"Tap (14.94)
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Figure 14.28 Nucleation of twin from stress concentration created by Frank-Read or
Koehler dislocation source.

where 74p is the externally applied stress. Assuming, to a first approximation,
that all dislocations in source travel the same distance (equal to L), and that
only one dislocation is traveling at each instant we have

t=n"t

Hence

n*L
e eQ/RT (14.95)

Twinning occurs when the material is loaded elastically. Assuming a loading
configuration:

E=— and €= — (14.96a)

Substituting Eqgs. (14.93) and (14.95) into. Eq. (14.96a) (0 = 27 for an ideal
orientation 6 = 7/2 for twinning), we obtain
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* 1/(m+1)
o= Z(nzﬁ ) él/(m+l)eQ/(m+l)RT= K'él/(m+l)eQ/(m+l)RT (14.97b)

Since, obviously, twins can still be generated when the strain rate is very low,
an athermal stress should be added to Eq. (14.96a).

14.4.3 Application to Iron and Copper

This constitutive equation is applied to the experimental data obtained by Hard-
ing [40] for monocrystalline iron. The dislocation dynamics parameters were
obtained from Stein and Low [17] for Fe/3.5Si and are, for edge dislocations,
0 = 51.66 kJ/mol, K’ = 380 MPa, m = 36.

The results are plotted in Figure 14.29, where the temperature and strain-rate
dependence of the twinning stress are well represented. For comparison pur-
poses, the yield stress for slip is also shown in the same plot. Calculated values
are continuous (or hatched) lines, and experimental results are given by points.
The curves for slip were obtained from the application of the Zerilli-Armstrong
constitutive equation [Equation (14.87)] for a monocrystal. It is clear that the
temperature and strain-rate sensitivities for slip are much higher than those for
twinning. From the curve plotted in Figure 14.29, it is possible to obtain the

800 N ¥ T T I L] T T Ll | T T T T I T T T L l T L L} L} l L T T 1 l T T T T

C Experiment Calculation h
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Figure 14.29 Comparison of calculated and measured slip and twinning stresses for
monocrystalline iron. (From M. A. Meyers, O. Véhringer, and Y. J. Chen [37])
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Figure 14.30 (a) Experimentally measured Hall-Petch and Meyers-Ashworth yield
Stress versus grain size response for iron (results from T. R. Malloy and C. Koch, Met.
and Mat. Trans. A, 294 (1998) 2285; E. P. Abrahamson, 11, in Surfaces and Interfaces,
Syracuse U. Press, 1968, P. 262); (b) Hall-Petch slopes for slip (as a function of strain
rate) and twinning (assumed to be, to a first approximation, strain-rate-independent) for
copper. (Experimental high-strain rate point from W. Tong, R. J. Clifton, and S. Huang,
J. Mech. Phys. Sol. 40 (1992) 1251).

slip-twin transition for iron. The critical temperature rises from ~120 K at strain
rates in the 1073-s~! range, to 200 K, at 10% s-!. This relationship breaks down
at 1183 K, the o — @ transition temperature.

14.4.4 Grain-Size and Stacking-Fault Energy Effects

The grain size dependence of the twinning stress has been successfully
described by a Hall-Petch-like relationship:

or =oor + krd™'/? (14.97a)

The Hall-Petch slope for twinning has been shown [38, 39, 41-43] to be con-
siderably higher than the Hall-Petch slope for slip. The micromechanisms initi-
ating twinning (dislocation pileups) and slip (arguably, the stress concentration



14.4 MECHANICAL TWINNING 533

700 AL LA TSAL IR BN ER SO H SR N N B R B E H EY B B B B B
- Voehringer twinning ]
600 __ _ee= = - -10°s1(20 GPa)
- A - 10851 (10 GPa) ]
500 |- e -~ 7 —
- - - 2
g - ~—9°° - --- 107s7! (6 GPa) ]
S400F o m-m—m T -
b r - Tong et al. n
4 P 10657 .
@ 300F - - —---"7" .
_E_ C 3
[V - -
200 Meyers et al. 7
r 103s7! ]
100 :_ %—A—’/ 10_3 s-l ]
- AA_____A_—-—_—/ ]
0 C 0 v oo by oy b e by by

0 0.1 0.2 0.3 0.4 0.5

d—l/Z (“m—1/2)
b)

Figure 14.30 (Continued.)

at grain boundaries due to elastic anisotropy of metals, as proposed by Meyers
and Ashworth [44]) are possibly quite different; this would explain the differ-
ences in slope. Meyers and Ashworth [44] proposed a mechanism based on
the formation of a grain-boundary layer where the dislocation density is much
higher than the grain interior. This layer is formed during the early stages of
plastic deformation and is assumed to have a flow stress osG. This layer is the
result of the elastic incompatibility between adjacent grains (elastic anisotropy),
dislocation sources at grain boundaries, and the fact that the grain boundary is
an obstacle for dislocation motion. The Meyers—Ashworth model provides a
linkage to the nanocrystalline scale, where it is well known that the Hall-Petch
slope is severely reduced. The material is envisaged as a composite, comprised
of the grain interiors, with flow stress gyp, essentially equal to the monocrys-
talline value, and the grain-boundary work hardened layers, with flow stress
osGs- The Meyers—Ashworth equation is

o, = osp +8k(o5Gp — a;)D~"/* — 16k* (076 — 075)D”" (14.97b)

where oscp and osp are the flow stresses of the grain boundary and grain
interior, respectively. It differs from the formulations presented in Chapter 10
by Armstrong because it is not based on a pileup. It provides a grain size
dependence for iron, seen schematically in Figure 14.30a. The conventional
Hall-Petch response breaks down at very small grain sizes with a decrease in
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the slope, because of the third term in the equation. It should be noticed that it
predicts no grain size sensitivity for tungsten, which has E 1 = Eqg = Eqgo. It
is probable that both elastic anisotropy and barrier effects determine the grain
size sensitivity. Hence, three principal factors contribute to the grain-size depen-
dence of flow stress:

1. The grain boundaries act as barriers to plastic flow.
2. The grain boundaries act as dislocation sources,

3. Elastic anisotropy creates additional stresses in the grain-boundary sur-
roundings.

The differences in Hall-Petch slope for slip and twinning lead to very unique
strain-rate effects, that were pointed out, for the first time, by Meyers et al. [45].
This effect is clearly illustrated in Figure 14.30b for copper. The Hall-Petch
dependencies for slip and twinning are both shown. It is assumed to a first
approximation, that the Hall-Petch relationship for twinning is fixed and strain-
rate-independent. The Hall-Petch relationship for slip is translated upward, as
shown in Figure 14.30b, as the strain rate is increased. The differences between
ky and k7 lead to the intersection of the two lines, in the region ~ 1078 s71,
for a grain size of 40 pm, marked in the figure. Copper specimens with grain
size larger than 40 um should twin before slipping, at 10% s~!. On the other
hand, specimens with grain sizes smaller than 40 pm slip before twinning at
this strain rate. This effect seems to be prevalent in FCC (as shown for copper
by Meyers et al. [45]), BCC, and HCP metals.

The effect of grain size on the slip-twinning transition for iron is shown
in Figure 14.31. Figure 14.31a shows how the intersections of the slip and
twinning equations, for a grain size of 100 pm, lead to transition points. Five
points are obtained in Figure 14.31a and replotted in the temperature-strain
rate plot of Figure 14.31b. By using the appropriate Hall-Petch parameters for
slip and twinning (that are different), the curves for different grain sizes are
developed. The effect of grain size on the slip-twinning transition is evident.

The stacking-fault energy, v, has a significant effect on the twinning stress
for FCC metals. The analysis carried out by Meyers et al. [37] is summarized
here. The following expression is experimentally found:

or=K, (%) 2 (14.982)

As an illustration of the effect of SFE on the incidence of twinning, the Cu-Zn

system is analyzed. The SFE can be correlated to the concentration of solutes
in copper alloys and the following expression can be written:

Iny=Iny¢, + K, ( (14.98b)

C/Cox  \?
1+ C/Crax
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Figure 14.31 (a,b) Effect of temperature, strain rate, and grain size on slip-twinning
transition for iron. (c,d) Effect of stacking-fault energy on the slip-twinning transition of
brass (monocrystalline (c) and polycrystalline (d)) (from M. A. Meyers, O. Vohringer,
and Y. J. Chen, in “Advances in Twinning,” TMS-AIME, 1999, p. 43).
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where vy, is the stacking fault energy for copper, C is the concentration of

solute atoms, and Cpax is the maximum concentration of the solute. The best

fit was obtained with K; = 12.5; yc, = 57 + 8 mJ/m?; K, = 6 GPa.
Substitution of Eq. (14.98a) into Eq. (14.98b) yields:

)

K> c*
or = -(G_b-)—'/T exp| In you + K1 ( T c* ) (14.98¢)

The effect of solid solution (Zn, Ag, Al, Sn, Ge) atoms on the mechanical
response of Cu has been carefully established; the effects of these solutes on
the Hall-Petch equation has also been established. Vohringer [168] proposed
the following expression, which is used for the yield stress:

%* _
gs=0g+0 +kD 12

' .. 1/q
k1 /P
= 0o+ K3ePC¥3 + [(a* + K4, C¥3) (1 - %) T‘/P]
0

+ kD12 (14.98d)

Eq. (14.98d) is based on the overcoming of short-range obstacles, that have the
shape dictated by the parameters p and g. The effect of the solid solution atoms
is manifested (both in the thermal and athermal components of stress) through
the C?/3 relationship and Labusch parameter €, which has different values for
different solid solution atoms. K3 and K4 are parameters, and € is a reference
strain rate, that was taken by Vohringer as 107 s7!.

The effect of work hardening can be incorporated into Eq. (14.98d) by
adding the term Cae" to the thermal component of stress, since work hardening
increases, in FCC metals, the density of forest dislocations, which constitute
short-term barriers.

The results of the calculations are represented in the slip-twinning transition
plots of Figure 14.31, in which Eqgs. (14.98¢c) and (14.98d) were used. These
calculations were carried out for different Cu-Zn alloys: 5, 10, 15, and 20%
at Zn. Figure 14.31c shows the results for monocrystalline brass, while Figure
14.31d shows the results for a grain size of 50 um. It is clear that the addition of
Zn increases the propensity for twinning, displacing the slip-twinning transition
upwards. By using Eq. (14.98d) with the addition of the term C,e” it is possible
to establish the onset of twinning after different amounts of plastic deformation.
Since Cu—Zn is FCC, the occurrence of twinning can occur after significant
plastic deformation.
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14.5 SHOCK-WAVE DEFORMATION: THE UPPER BOUNDARY FOR
STRAIN RATES

As the strain rate is increased beyond 103 s7!, it is increasingly difficult to
ensure homogeneous stress state in the specimen. This is done by decreasing
the specimen size or the plastic deformation region. Strain rates between 10*
and 4 x 10* 57! can be obtained in this fashion. Minjature Hopkinson bars,
with specimens having ~1 mm dimension, yield these strain rates. By using
very thin specimens, (down to a few micrometers) in a pressure—shear impact
arrangement, Clifton and co-workers [46] were able to successfully generate
strain rates of 10° s~!. One problem in this configuration is that the specimen
thickness is on the same order than the grain size, making the interpretation
more difficult.

In the region 10°-107 57!, it is virtually impossible to avoid plastic wave
propagation effects, and we enter into the shock-wave region. The shock front is
treated, in the simplified hydrodynamic approach, as a discontinuity in pressure,
temperature, and density. In a real shock-wave propagation event there is a
finite slope at the front, as illustrated in Figure 14.32a. The plastic wavefront
is preceded by an elastic precursor. Swegle and Grady [47] took the slope of the
plastic wavefront and calculated a strain rate by assuming a linear rise. They
plotted these values for a number of materials as a function of the maximum
stress. The results are shown in Figure 14.32b and, surprisingly, fall into straight
lines (in the double logarithmic axes) with the same slope. This led them to
propose the relationship

o=Ksel* (14.99)

It is clear that conventional dislocation multiplication mechanisms leading to
yielding at lower strain rates do not have sufficient time to be operative under
the conditions imposed at the shock front. This led Meyers [48,49] to propose
a mechanism for dislocation generation at the shock front that is based on an
earlier idea by Smith [50], also known as the Smith interface. The Smith inter-
face is not physically possible because the interface dislocations would need to
move with the shock front, demanding supersonic speeds. Figure 14.33 shows
the evolution of dislocation substructure as a shock front moves through an ide-
alized crystal lattice, as envisioned by Meyers [48]. Dislocations form initially a
Smith interface (Fig. 14.33b), disrupting elastic distortion, represented in Figure
14.33a. The shock front advances, and the dislocation interface is left behind
(Fig. 14.33¢). As this occurs, elastic deviatoric stresses build up. The initial
calculations of resulting dislocation densities produced values orders of mag-
nitude higher than the observed results. An improved calculation, carried out
by Ravichandran and Meyers [51], predicts values that compare favorably with
dislocation densities measured from transmission electron microscopy obser-
vations. At the interface as shown in Figure 14.34, several layers of interfa-
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Figure 14.32 (a) Shock compression front and calculated strain rate; (b) experimen-
tally observed relationship between strain rate and shock stress for a number of mate-
rials. (Adapted from J. W. Swegle and D. A. Grady, J. Appl. Phys. 58 (1985) 692).

cial dislocations were left behind by the shock front. Elastic distortion at the
shock front is balanced by the stress fields due to the dislocation arrays. When
the deviatoric elastic stresses at the front reach a critical level, dislocations are
again generated. The dislocation spacing along the front, /., can be calculated
from the lattice contraction. In order to calculate h, the superposition principle



FRONT
ck compression. [Adapted

RONT

(d)

eneration in sho

w

(a)

21.]

’

point on the front due to the dislocation

slocations only:

8

Scripta Met. /2 ( 1978)

o

DYNAMIC DEFORMATION AND FAILURE
b

was applied and the total stress at a
array is estimated. Assuming edge di

Figure 14.33 Homogeneous dislocation

from M. A. Meyers,

540

22
nl

Gb

27(1 - »)

(28} iad

2
303

-2h%) 2
2v2h
27(1 —v) n282

Gb

o2 =y

Gb

012~



145 SHOCK-WAVE DEFORMATION: THE UPPER BOUNDARY FOR STRAIN RATES 541

NAXI»A MDA N A |Plostically

deformed
AR
N ~ \ { 4 -, -
ol IO SN et Elastically
h [N \ //,’//5:’ distorted
PoL L L Uy | ]|y reglon
shockfﬁ+ﬁvﬁ*{7t vV i

Figure 14.34 Computation of maximum thickness h of elastically distorted region in
shock compression. (From G. Ravichandran and M. A. Meyers, unpublished results.)

where n is a positive integer designating the position of the dislocation (n =

1,2,3--- o). The series converge and lead to the estimate of the stresses.
Thus:

011~0 0'27~0

S Gb  h
s -
l V2(1-») 4522

(14.101)

When the stresses at the front reach a level at which homogeneous dislocation
nucleation can occur, then a new layer is formed. The dislocation density can
be obtained from

p = [()*hT! (14.102)

The stress for homogeneous nucleation of partial dislocation is:

r
— =0.054 14.103
G ( )
Setting it equal to Eq. (14.101):
1 -V b

From Egs. (14.102) and (14.103a) and the equation of state one can obtain the
dislocation density as a function of shock pressure.

The calculated values as a function of pressure, for nickel, are shown in Fig-
ure 14.35. The calculated densities are significantly higher than measured values
at low pressures and approach them at higher pressures. If additional considera-
tions, such as dislocation motion and annihilation, are taken into consideration,
a better fit to the data could be obtained.
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Recent computational results by Holian and Lomdahl [52] and Bandak et al.
[53] indicate that homogeneous dislocation nucleation behind the shock front
does indeed take place and confirm the soundness of the Smith-Meyers mecha-
nism. The dislocation structures observed by transmission electron microscopy
confirm this: they tend to organize themselves into cells with loose walls, a
very unstable configuration (e.g. Meyers [4]).

Application of the Swegle-Grady relationship [Eq. (14.100)] to the
slip~twinning threshold enables the calculation of a threshold shock stress for
twinning. This is shown by the relationship, which provides a rationalization
for the experimental results, obtained by a number of investigators. It has been
found that metals have different threshold stresses for twinning, that depend on
stacking fault energy, grain size, and temperature.

Figure 14.36 shows the calculated threshold stresses for twinning in shock
compression of tantalum. This threshold stress was obtained from applica-

tion of the Zerilli—Armstrong equation [Egs. (14.87) and (14.96b)] to the
Swegle-Grady equation [Eq. (14.100)]:

4 /
K,(K504 )l/(m+l)eQ/(m+I)RT_ Cle—(C3—C4 In Ksog T + (I\T _ kS)D—(I/Z) —06=0
sh
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Figure 14.36 Calculated threshold twinning stress (in shock compression) for tanta-
lum, as a function of grain size.

14.6 SHEAR LOCALIZATION

14.6.1 Mechanical Modeling

We emphasize again that a number of excellent reviews are available in the
literature. The book by Bai and Dodd [4], review articles by Rogers [54], Stelly
[55], and Dormeval [56], and the proceedings of a 1992 symposium on shear
instabilities [57] contain a significant amount of information.

Clifton [58], Bai [59], and Molinari and Clifton [60] introduced analyses
of shear instabilities that used the perturbation method together with the con-
servation equations. These analyses enable the prediction of the effect of per-
turbations on the onset of shear band formation and provide a guideline to the
prediction of the evolution of a shear band. Clifton [58] improved the simplified
criterion for instability proposed in the 1940s:

dr

—_= 14.104
d’y 0 ( )

Using an initial perturbation in temperature with wavenumber £, he obtained

1 [ dr « dr . NE?
— == == = 4.105
[T(d'y>+pC (dT)]m’Y-FpC 0 (14.105)
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where m = strain-rate sensitivity
p = density
C = heat capacity
a = heat-to-work conversion factor
A = heat conductivity

The expression derived by Bai [59] is similar. Fressengeas and Molinari [61]
introduced a new perturbation method, called the relative perturbation method,
which accounted for the nonsteadiness of plastic flow. Leroy and Molinari
[62,63] extended the analysis of shear instabilities by using a two-dimensional
bifurcation method. They obtained variation in shear along the band and a pat-
terning behavior.

One-dimensional models of shear bands have the limitation that the shear
strain is constant along the length of the band. This is not a true realistic rep-
resentation of shear bands which exhibit a front, such as a mode II or mode III
crack, and shear strains that vary along the length of the band. This aspect was
considered by Kuriyama and Meyers [64], who treated the shear band as having
an extremity. They showed that the advance of a shear band proceeded by the
softening of the material ahead of the tip of the band. Grady [65] developed a
simplified two-dimensional model for the shear band that contained a process
zone. In analogy with fracture mechanics, he developed an expression for the
shear band toughness K as

K =~/2GT (14.106)

where G is the elastic shear modulus and T'; is the shear band dissipation energy.
This shear band dissipation energy varies over a wide range, from 15 kJ/m?
for uranium to 800 kJ/m? for copper.

14.6.2 Microstructural Aspects

At the microstructural level, the material is not a homogeneous continuum. The
initiation of shear localization is a critical event, which can be triggered by
either external, geometric factors, or internal, microstructural factors. External
initiation sites are regions of stress and strain concentration; microstructural
sites are regions that undergo localized softening by some mechanism. Fig-
ure 14.37 shows in a schematic fashion, a number of these mechanisms. Pos-
sible microstructural initiation sites are fractured second-phase particles (Fig.
14.37¢); dislocation pileups are released as an avalanche or (Fig. 14.37d) as geo-
metric softening resulting from the rotation of atomic planes toward orientations
with a lower Schmid factor, and preferential slip paths produced by martensite
transformation and twinning (Fig. 14.37f). Armstrong et al. [66] performed cal-
culations indicating that the heat generated in a pileup release is sufficient to
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initiate a shear band. Another very interesting mechanism was advanced by
Weertman and Hecker [67], who proposed that local dislocation reorganiza-
tion produced elongated dislocation-free regions that were initial shear bands.
Meyers et al. [68] observed similar features on shock-loaded nickel subjected to
subsequent tension. Localized regions (shaped like an oblate spheroid), virtually
dislocation-free, were produced from the densely deformed material, leading to
shear failure by a softening mechanism.

Adiabatic shear bands are the favorite sites for failure, either by ductile void
nucleation, growth, and coalescence, or by cracking. The material within the
shear band is heated to a high temperature and, therefore, has a lower flow
stress than the surrounding matrix. Thus, tensile stresses will open voids at the
shear band. Alternatively, after cooling, the material in the shear band can be
~ harder and more brittle than the surrounding matrix. A number of examples of
failure initiation at the shear bands are described by Grebe et al. [69], Wittman
et al. [70], Meyers and Wittman [71], Beatty et al. [72], and Stelly et al. [73].
Figure 14.38 shows the formation of cracks and voids for four different alloys.

The microstructural evolution inside the shear band has been actively stud-
ied since the late 1980s, and it was independently discovered by Stelly and
Dormeval [55,56] and Meyers and Pak [74] that the structure inside the shear
band of titanium consisted of fine (<1 pum) recrystallized grains. Figure 14.39
shows these recrystallized grains for titanium [74] and copper [76]. Since 1986,
a number of investigators have observed recrystallized structures inside shear
bands. Of particular interest are armor steels, and Meunier et al. [75], and Beatty
et al. [72] have found strikingly analogous results—the material within the shear
band consisted of nanoscale grains (~50 nm). Figure 8 of Meunier et al. [75]
and Figure 10 of Beatty et al. [72] are almost identical.

Often, the critical event governing localization is the attainment of the recrys-
tallization temperature. Thus, the material can exhibit unstable behavior, specifi-
cally, a negative slope in the true stress—true strain curve, without shear band
formation. Meyers et al. [8] observed this behavior for titanium and the results
are shown in Figure 14.40. This figure shows the temperature as a function of
strain for plastic deformation at 104 s-1, Instability is reached much earlier than
localization (clear shear band formation). Similar results were found for tanta-
lum by Chen et al. [6]. The stress—strain curve shown in Figure 14.41, for a
strain rate of 3500 s~!, decreases steadily from e = 0.1 to € = 0.7, when the test
was interrupted. This softening is due to the effect of temperature on thermally
activated dislocation motion. The cross section of the resulting specimen shown
in Figure 14.41 does not show any shear band. Localization was prevented by
the temperature, which does not reach a sufficiently high level for recrystal-
lization. The incorporation of constitutive equations that in turn incorporate
a flow stress drop due to dynamic recrystallization should help the modelers
create more realistic representations. Andrade et al. [9] proposed a modified
Johnson-Cook equation with a flow stress discontinuity [Eq. (14.13)].

The microstructural evolution leading to dynamic recrystallization has been
discussed by Andrade et al. [76], Chen et al. [6], and Meyers et al. [8]. It
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Figure 14.38 Crack and void formation along shear bands: (@) Ti: (b) TIAIV alloy;
(c) AISI 1080; (d) AISI 4340 alloy.

seems clear that the short duration of the deformation-cooling time inhibits
diffusional processes. Dynamic recrystallization has been classified by Derby
[77] into migrational and rotational. The dynamic recrystallization observed by
Andrade et al. [76] in copper is clearly of the rotational type, as evidenced
by the total absence of recrystallization annealing twins that would necessarily
occur in migrational processes. Similarly, results on tantalum confirm this pro-
cess. Rotational recrystallization needs concurrent plastic deformation. It is well
documented for geologic materials such as quartz, halite, marble, and sodium
nitrate, and has recently been observed for copper by Andrade et al. [76]; obser-
vations within shear bands in titanium are also suggestive of this mechanism
[8,74). Figure 14.42 shows the primary features of the proposed mechanism.
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(b)

Figure 14.39 Recrystallized structure with grain diameters of 0.1-0.3 um observed in
(a) shear band in titanium [74] and (b) in copper [76].

For convenience, it was divided into four stages. Random dislocation distribu-
tion (stage 1) gives way to elongated dislocation cells (stage 2), which become
elongated subgrains (stage 3) as deformation is increased. With further deforma-
tion, these subgrains break up into micrograins that are approximately equiaxed
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Figure 14.42 Microstructural evolution in high-strain-rate deformation: (a) uniform
dislocation distribution; (b) elongated dislocation cells; (c) elongated subgrains; (d)
elongated subgrain breakup (dynamical recrystallization; (e) dynamically recrystalliza-

tized grains (size ~0.1 um).

(stage 4) as a result of interfacial energy minimization. With continued defor-
mation, these micrograins rotate. Takeuchi and Argon [78] suggested that the
subgrain size resulting from high-temperature deformation was related to the

applied stress by

where o = applied stress
6 = subgrain size

p = elastic shear modulus

K (14.107)

b = Burgers vector magnitude

K = 10 for metals
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This is fairly similar to the expression obtained by Tungatt and Humphreys
[79]. It is originally due to Sherby and Burke [80] and has its origin in low-
temperature, high-stress creep. Derby [77] suggested that it could be applied to
rotation recrystallization. For the tantalum used by Chen et al. [6], the parame-
ters are 0 = 500 MPa, p = 69 GPa, and b = 0.2333 nm. This yields a subgrain
size of 0.3 um, consistent with the observations. Thus, one may conclude that
dynamic recrystallization by a rotational mechanism takes place in restricted
regions of intense deformation (i.e., shear localization regions).

It is possible to analyze the rotational dynamic recrystallization from an
energetic viewpoint. The overall energy due to random dislocation distribution
(stage 1), dislocation cell formation (stage 2), subgrain formation (stage 3), and
micrograin formation (stage 4) can be evaluated. This is described by Meyers et
al. [81]. Calculations predict a critical dislocation density, misorientation, and
cell sizes, in agreement with experimental observations.

14.6.3 Self-Organization of Shear Localization

Most studies have been concerned with an isolated shear band, whereas the
accommodation by internal plastic deformation in response to externally applied
tractions takes place by the cooperative initiation and propagation of assem-
blages of shear bands. Some historical analogy with dislocations (the elemen-
tary carriers of plastic deformation at the microlevel) is suitable here. More
recent efforts, dealing with self-organization and low-energy configurations of
dislocations, are elucidating, in a quantitative manner, the plastic response of
materials (e.g., see Kuhlmann-Wilsdorf [82] and Kubin [83]).

A recurrent topic in studies of damage in materials is the question of spacing
between damage sites. The ability to predict and possibly control significant fea-
tures of the failure patterns, such as numbers, sizes, locations, and velocities of
residual particles, is dependent on fundamental and quantitative understanding
of evolution laws for these localized damage sites. A first step in obtaining an
answer would be to estimate the spacing of initial nucleation sites since damage
tends to grow in specific places in the material. Of course, this leaves out such
questions as secondary damage and subsequent interaction of damage sites, but
it is still a crucial beginning.

The analyses carried out by Grady and Kipp [84], Wright and Ockendon [85],
and Molinari [86] are theoretical efforts at elucidating the collective behavior of
shear bands. The analysis by Grady and Kipp (GK) [84] is based on momentum
diffusion as unloading occurs within the band, and the one by Wright and Ock-
endon [85] and Molinari [86] uses perturbation of rate-dependent homogeneous
shearing.

The basic notion, used in the GK analysis, is that rapid loss of strength or abil-
ity to transfer shearing stresses across the developing shear band affects neighbor-
ing material by forcing it to unload. This concept is similar to the one proposed
by Mott [117] in the fragmentation of shells. This unloading process is commu-
nicated outward by momentum diffusion, rather than by elastic wave propaga-
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tion, and ultimately the minimum separation between independently nucleating
bands arises from computing the distance traveled by the unloading front during
the time required to unload as localization occurs. Their analysis also assumes
that the width of the shear band adjusts itself so as to achieve a maximum growth
rate, and that the growth rate of narrower bands are limited by thermal diffusion
and that of wider bands by inertia. The details of the analysis are too complex to
repeat here, but the predicted spacing, Lgx, given in their Eq. (23), with suitable
changes in notation (thermal diffusivity x has been replaced by thermal conduc-
tivity divided by density and heat capacity, k/pC),is

1/4
okC ) (14.108)

Lox=2 ( -

Y a*ro
In this formula the applied shear strain rate is +, and the relation between flow
stress and temperature is assumed to be

T=10[1 — a(T - To)] (14.109)

where 7o is the strength at a reference temperature To, and a is a softening
term. Grady and Kipp did not include strain and strain-rate hardening in their
analysis.

On the other hand, the Wright-Ockendon (WO) analysis [85] is based on the
notion that shear bands arise from small, but growing disturbances in an other-
wise uniform region of constant strain rate. Disturbances do not propagate in
perpendicular directions, but simply grow in place, so the most likely minimum
spacing is obtained by finding the fastest-growing wavelength. The problem is
posed by first finding the uniform fields and then by finding differential equa-
tions for perturbations with the uniform fields taken as the ground state. Fourier
decomposition of the perturbation equations is followed by an asymptotic rep-
resentation of the solution. Then it is a simple matter of differentiation to find
the wavelength that grows the fastest.

Wright and Ockendon [85] assumed the following constitutive equation,
which has both termal softening and strain-rate hardening components:

T=To[1—-a(T—T0)]<i—) (14.110)
Yo

where 7 is a reference strain rate, m is the strain-rate sensitivity, and 7¢ is the
flow stress at the reference temperature T and strain rate Yo-

Wright and Ockendon [85] arrived at an expression for the wavelength pro-
viding maximum growth of the perturbation. This yields a shear band spacing
Lwo, equal to
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(14.111)
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The WO analysis was expanded by Molinari [86] by incorporating work hard-
ening into the constitutive equation. This more elaborate analysis predicts shear
band spacings that are lower than the ones for our ideally plastic material.

The foregoing analysis is given by Nesterenko et al. [87,88] who carried out
experiments with titanium and stainless steel, using the symmetric radial col-
lapse of a thick-walled cylinder at high strain rates (10* s™!). The inner wall of
the cylinder undergoes the highest strain, which decreases toward the outside.
The results are surprisingly reproducible and clearly show the self-organiza-
‘tion in the initiation and propagation of shear bands. The shear bands follow
a logarithmic spiral trajectory, dictated by the maximum shear stresses. Figure
14.43 shows the regular spacing of shear bands; in Figure 14.43a an optical
micrograph reveals the bands, whereas tracings are shown for titanium and 304
stainless steel (SS) in Figure 14.43b,c, respectively.

The experimental results are compared with predictions of two theories, and
the experimentally obtained shear band spacings [1 mm (Ti)] are in good agree-
ment with the predictions of Grady—Kipp [1.8 mm (Ti)] and Ockendon—-Wright
[0.3 mm (Ti)]. It is felt that the OW theory predicts better the shear band spac-
ing if it is mainly determined by the initiation stage, whereas the propagation
is affected by the momentum diffusion in the GK approach. Prior to the onset
of localization, momentum diffusion is absent, and its role is fully felt only
in the propagation stage. The trajectories of the shear bands have been mod-
eled, enabling a prediction of the final configuration in good agreement with
observations.

14.7 DYNAMIC FAILURE

Failure can he defined as the separation of a body into two or more parts. Sep-
aration requires tension so tensile stresses are important in the production of
failure. Dynamic failure can be classified into two groups:

1. Tensile Failure. The state of stress and the dynamics of generation, prop-
agation, and interconnection of flaws dictates the morphology. Under uni-
axial strain conditions, this failure is called “spalling.”

2. Compressive Failure. Under compressive traction, localized regions of
tension form in the microstructure and cause failure. Pure FCC metals
(gold, silver, etc.) are mostly immune to this type of failure, but ceramics,
composites, and less ductile metals (e.g., tungsten, steel) can fail this way.

The rest of this chapter will explore the microstructural aspects of these two
types of failure mentioned and a few of the mechanical models that have been
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(a)

(b) (c)

Figure 14.43  Shear band patterns on cross section of collapsed cylindrical specimens:
(a) optical micrograph for titanjum; (b) tracing of shear bands for titanium; (c) tracing
of shear bands for stainless steel.

developed. It is an impossible task to properly review this extensive field in
only a few pages.

14.7.1 Dynamic Failure in Tension

14.7.1.1 Mechanical Modeling
Dynamic failure in tension involves high-velocity crack propagation in brittle
materials and rapid void growth in ductile materials. Between a spherical void,
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Figure 14.44 (a) Loading boundary conditions; (b) referential translation in Freund’s
dynamic crack propagation analysis; (¢) normalized stress intensity factor as a function
of normalized crack velocity (C is Rayleigh speed). (Reprinted from L. B. Freund, J.
Mech. Phys. Solids, 20 (1972), p. 150, with permission from Elsevier Science.)

for a perfectly ductile material—and an infinitely sharp crack tip—for a brittle
malcrial—one can envisage an entire range of phenomena. The limiting velocity
of a crack in a brittle material has been calculated by Mott [89], at an elemen-
tary level, and more completely by Yoffé [90], Broberg [91]. Craggs [92], Baker
[93]. Achenbach [94], and Freund [3, 95-100]. These different studies use vary-
ing boundary conditions and crack sizes. Only the results of Freund’s work
will be illustrated here. Figure 14.44a shows the configuration calculated by
Freund [96]: a semi-infinite crack growing at a constant velocity v under a time-
indcpendent loading 0. in an elastic material. The solution involves integral
equations, the Laplace transform, and the Wiener-Hopf technique, originally
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developed for electromagnetic waves. The stress intensity factor at a velocity
v, K1(v,1), is related to the stress intensity factor at rest, K;(0,7), by

Ki(w,0) _ 1-(v/vg)
Ki(0,2) ~ 1- (v/2uvg)

(14.112)

where vg is the Rayleigh wave velocity. Figure 14.44¢ shows the results for two
values of the Poisson ratio ». The stress intensity factor drops to zero when v
= Cg, so the Rayleigh wave velocity is the limiting crack velocity. This should
be considered as an upper bound, and real materials are subjected to a series
of complicating effects that decrease the maximum velocity:

1. Plastic deformation at crack tip, increasing work required for crack prop-
agation

2. Grain boundaries and other barriers and crack-tip deflectors

3. Crack bifurcation at high velocities predicted from the calculations of
Yoffé [90] because of the shifting of the maximum principal stress ori-
entation with increasing velocity

Yoffé [90] predicted a shift in orientation with possible bifurcation at 0.5 C, <
U < 0.8C;, where C; is the shear wave velocity, while Congleton [101] and Shih
[102] suggested a value of 0.7 Cg. Yoffé attributed the bifurcation of cracks to
the compression of the stress field ahead of the crak at high velocities and to
the generation of maximum principal tensile stress planes away from the plane
of the crack. Ravi-Chandar and Knauss [103] conducted careful experiments
that suggest another mechanism for the bifurcation of cracks. The interactions
of microcracks in the process zone ahead of a major crack are responsible for
bifurcation, according to them.

It is possible, in a unique loading situation, to produce supetsonic crack prop-
agation, and this was accomplished by Winkler et al. [104] by laser irradiation
of KCI crystals. A plasma, driven down the crack opening, can produce veloc-
ities between 10* and 105 m/s.

The growth of voids involves considerable plastic deformation, and quasi-
static void growth models have been developed by McClintock [105,106] and
Rice and Tracey [107], among others. Additional efforts by Glennie [108], Rice
and Johnson [109], and McMeeking [110] are also noteworthy.

Curran et al. [111] developed a physically based model involving the nucle-
ation, growth, and coalescence of voids in a region undergoing tensile stresses
(NAG model). Their approach involves the following expressions for the rate
of nucleation N and the rate of growth, R of flaws:
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(A1

R:(““’“’)R (14.114)
4n

where 0,0 = tensile threshold stress
Ny = threshold nucleation rate

N:Noexp<o—o"0) (14.113)

g = stress sensitivity for nucleation
040 = is the tensile stress threshold for void growth
9 = crack-tip viscosity
R = crack/void radius

The yield surface for a material containing voids was modeled by Gurson [112]
as

io':a'= 1 +¢* — 2¢ cosh i o2 (14.115)
2~ = 20y Y

where ¢ = volume fraction of pores
o’ = stress deviator

oy = yield stress of the material

P = hydrostatic stress (tensile or compressive)

When ¢ = 0, it reduces itself to a J, flow criterion. Fyfe [113] used the Gurson
model to predict dynamic failure by tension in metals. Johnson [114], on the
basis of the Carroll-Holt [115] model, developed an analytical treatment for
failure under tension and compared his predictions with spalling experiments
in copper.

The treatments discussed above deal with individual cracks or voids. When
the collective behavior of cracks is considered, different approaches have to
be implemented. In spalling, a continuum model was developed by Davison
and Stevens [116]. A damage parameter D was defined, varying from 0 (ini-
tial undamaged material) to 1 (final spalled material). This damage parameter
was analytically expressed as a function of material parameters. For the case
of fragmentation produced by tensile stresses, the early theory of Mott [117]
was followed by the Grady-Kipp [118] and Grady [119] approaches, which led
to the determination of fragment size as a function of strain rate. Bai, Ke, and
coworkers [120-122] have developed a statistical model of microcrack gener-
ation, extension, and interconnection.
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Figure 14.45 Different stages in fragmentation of brittle material due to stress wave

loading: (a) initial, preexisting flaws; (b) compressive loading and stable growth of

flaws; (c) tensile loading; (d) growth of cracks and intersection of free surfaces; (e)
unloading of region surrounding crack growth.

Louro and Meyers [123,124], from observations in alumina, developed a
model for the prediction of the fragment size in a specimen subjected to sequen-
tial compressive and tensile loading. The compressional portion of the loading
pulse (and this will be discussed in Section 4) activates flaws and creates cracks,
which then grow at high velocities during the tensile portion of the pulse. Figure
14.45 shows the four different stages of fragmentation. Existing flaws (a) are
activated by compression, (with size a > a.), and new flaws are generated (b).
On tensile loading (c), the flaws will grow at velocities dictated by the crack
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dynamics equations. These cracks intersect each other (d), forming fragments.
Each growing crack generates an unloaded region (shown hatched in Figure
14.45¢) in which no subsequent flaw activation takes place. A simplified anal-
ysis was developed by Louro and Meyers [124]. The crack velocity V. was
assumed to be limited by the Rayleigh wave velocity Cr as

V. = Cgll - e2&F - ki) (14.116)

K- and K are the critical and current values of the stress intensity factor,
respectively. By considering flaws that were critical at the onset of tension,
N;, and flaws that were activated during tension, N,, Louro and Meyers [124]
developed a general expression for the crack surface per unit volume as a func-
tion of time, stress, and microstructure. The nucleation rate N, was corrected
continuously for the unloaded volume created by the growing cracks.

14.7.1.2 Microstructural Aspects

The microstructural aspects of dynamic fracture by spalling are extensively dis-
cussed by Meyers and Aimone [125] and Zurek and Meyers [126], among
others. The response of materials is complex and is dictated by the existing
microstructure and its evolution during shock loading and/or in high-strain-rate
loading. A wide variety of effects occur, and some of them will be illustrated
in this section. We will first review brittle materials, and then ductile materials.
A very important aspect of damage is the level at which we are observing it;
this level can be, somewhat arbitrarily, classified into microscale, mesoscale,
and macroscale. Roughly, these scales correspond to observations as follows:

Microscale: scanning and transmission electron microscopy
Mesoscale: optical microscopy
Macroscale: naked eye

One phenomenon of great importance is the dependence of fragment size (for
a brittle material) on the strain rate. Results by Field and co-workers [127] are
shown in Figure 14.46 for a ceramic impacted at different velocities: 35.6, 46,
76.2, 97.4, and 138 m/s. As the impact velocity is increased, the fragment num-
ber increases. A simple Hertzian cone is produced at 35.6 m/s, whereas fine
comminution results from the 138-m/s impact. These results are in accord with
the Grady-Kipp [118], Grady [119], and Louro-Meyers [123,124] formulations,
as well as a significant amount of additional experimental results. Figure 14.47
shows the formation of microcracks in alumina dynamically loaded in tension.
In Figure 14.47a the cracks gave rise to the microcracks, whereas in Figure
14.47b these microcracks were formed at the grain boundaries and are marked
by arrows. These results by Louro and Meyers [128] are consistent with exper-
imental observations by Longy and Cagnoux [129] as well as Cosculluela et al.
[130,131]. Figure 14.48 shows the effect of microstructural parameters, such as
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Figure 14.46 Formation of ejection cone and fragmentation due to impact of glass by

spherical projectile at different velocities (marked in m/s). (From J. Field [127], Fig.
21.)

grain size, on dynamic fracture of alumina. Under identical loading conditions
[53], alumina with a grain size of 24 um exhibited less macrocracking than
did alumina with a grain size of 4 um. The interpretation given by Louro and
Meyers [128] to this effect is that these were fewer grain boundaries in the
24-pm alumina; the grain boundaries (Fig. 14.48b) are sources of cracks.

In metals one can have both brittle and ductile fracture under tension, and
the transition from ductile to brittle behavior in steels is dictated by both tem-
perature and strain rate. This response is rooted in dislocation dynamics, as
described by Meyers [2]. This transition has a very significant effect on the
high-strain-rate fracture of steels, which occurs at a lower stress intensity fac-
tor than low-strain-rate fracture. The analysis by Follansbee and Zurek [132]
addresses this effect. Another phenomenon of great importance in steels is the
drastic change of morphology that occurs when shock pressure (which precedes
spalling) exceeds 13 GPa. When this occurs, the spall morphology changes dras-
tically. This phenomenon was first observed by Ivanov and Novikov [133]. Fig-
ure 14.49 shows low-magnification scanning electron micrographs of smooth
[P > 13 GPa (a)] and rough [P < 13 GPa (b)] spalls. On visual observation,
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)]

Figure 14.47 Flaws generated in Al;03 subjected to dynamic tension: (a) cracks at
voids; (b) cracks at grain boundaries.

the smooth spall appears as flat as a machined surface. A higher magnification
observation of these two morphologies is shown in Figure 14.50 for an AISI
4340 steel. The fracture produced at 10 GPa is brittle. The fracture produced
above the 13-GPa threshold is ductile. The explanation provided by Zurek et
al. [125] for this phenomenon is that the preshocking of the material to P > 13
GPa generates a large concentration of defects. which can then nucleate voids
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Figure 14.48 Cross sections of Al,03 disks impacted by flyer plate technique encap-
sulated in Al containers; P = 4.6 GPa; pulse duration = 1.6 ps. (From Louro and Meyers
[128].)

100um

Figure 14.49 Scanning electron micrographs of spall surfaces in steel: (a) smooth
spall; (b) rough spall. (From Meyers and Aimone [126].)
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Figure 14.50 Effect of impact pressure on morphology of spall fracture: (a) brittle
fracture, P = 10 GPa; (b) ductile fracture, P = 15 GPa. (Courtesy of A. K. Zurek.)
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on being subjected to the tensile pulse. The shift from brittle to ductile response
in steels can be produced by a decrease in grain size, an analogous response.
The ductile response of metals involves considerable plastic deformation;
Figure 14.51a shows a transmission electron micrograph of a void in copper
[135]. It is surrounded by a large dislocation density evidenced by the dark
region surrounding the void edges. This plastic deformation is necessary for
void growth and is an intrinsic component of the plasticity models described in
Section 14.2.1. Slip is also evident in Figure 14.51b, which shows an intergran-
ular void and the dislocation activity associated with its growth. The nucleation

(a)

Figure 14.51 Voids in copper: (a) peanut-shaped void viewed by high-voltage
(1-MeV) transmission electron microscopy; (b) grain boundary void with associated
slip traces.
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(®)

Figure 14.52 Effect of grain size on void distribution in copper: (a) specimen with
grain size = 20 um; (b) specimen with grain size = 250 pm.

of voids in copper is dependent on microstructural scale parameters. If the grain
size is small (Figure 14.52a), the nucleation occurs homogeneously throughout
the material. For large grain sizes, nucleation occurs primarily along the grain
boundaries, yielding the characteristic morphology of Figure 14.52b. The sec-
tion through a copper specimen subjected to a tensile pulse of 3 GPa is shown
in Figure 14.53. The right-hand side of the figure shows the etched micro-
structures. The nucleation, growth, and coalescence of voids at grain bound-
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(a) (b)

Figure 14.53 Cross section of copper specimen impacted by planar—parallel flyer
plate, generating pressure of 3.5 GPa: (@) unetched specimen; (b) etched specimen.

aries is obvious. Kanel et al. [136] showed that the spall strength of monocrys-
talline copper was higher than that of polycrystalline copper. This is contrary
to their quasi-static properties and an indication that the threshold stress for
grain boundary nucleation is lower than for homogeneous nucleation. These
results show that the morphology of the fracture is determined by the density
and spatial distribution of nucleation sites.

The flow stress of the matrix depends on strain rate, as discussed in Section
14.3. Nucleation of voids due to plastic deformation (at grain interior) and in
the grain boundaries are competing processes; at low strain rates, the former
dominates, while at higher strain rates, the latter becomes effective. The grain-
boundary nucleation sites become more effective as the grain size increases;
the total interfacial area decreases with increasing grain size, and, at a constant
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Figure 14.54 Qualitative explanation for anomalous effects observed in the spalling
of copper.

impurity content, their concentration at the boundaries increases with grain size.
Thus, the transgranular/intergranular transition, as the grain size is increased,
in spalling of copper. Figure 14.54 shows schematically, the competing effects
of the grain-boundary cohesive strength and flow strength of the matrix. This is
also discussed in Section 14.7.2 (Compressive Strength of Tungsten). Impuri-
ties segregate at the grain boundaries, weakening them. This effect is more
pronounced the larger the grain size: the impurity concentration being con-
stant, its segregation at the grain boundaries increases with increasing grain
size. There is no reason to believe that the grain boundary cohesive strength is
highly sensitive to strain rates. The two plots, for a large-grain-sized (LGS) and
a small-grain-sized (SGS) specimen are shown in Figure 14.54. At low strain
rates, the plastic flow of the matrix, and the associated void-opening initiation
(see Gurson) require less stress than grain-boundary decohesion. As the strain
rate is increased, a reversal of roles occurs. At the strain rate characteristic of
spalling, specimen LGS fails by grain-boundary separation, whereas specimen
SGS fails by matrix flow. This is schematically shown in Figure 14.54, which
also shows the spalling strength of the single crystal (SX), which has no grain
boundaries. Hence, SX has a higher spall strength than LGS.

Another clear example of a material with preferential nucleation sites at grain
boundaries is shown in Figure 14.55a. This Fe-30% Ni alloy contains a grain
boundary precipitate (brittle carbide) that gives origin to debonding without
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Figure 14.55 Incipient spalling in (a) Fe-30% Ni alloy, creating grain-boundary sep-
aration; (b) Ni, forming voids with facets.
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appreciable plastic deformation. Figure 14.55b shows voids within the grains;
they have geometric shapes that are due to the anisotropy of the flow stress (in
this case, of Ni).

The morphology and breakup of voids in a dynamic tension region can lead
to interesting morphologies, and one of them is shown in Figure 14.56a. The
voids appear to circle a region that therefore undergoes a rotation. Benson [137]
also obtained these “void sheets,” which constitute boundaries for the domain.
The evolution of one such a void agglomeration is shown in Figure 14.56b.
This is the result of a hydrocode computation for AISI 4340 steel.

14.7.2 Dynamic Failure in Compression

14.7.2.1 Failure Mechanisms

Whereas ductile metals can undergo large compressive strain without failure, in
brittle materials (ceramics, rocks, intermetallic compounds, and brittle metals
such as cast iron) flaws are generated under compressive stresses. It should be
clarified that the remote compressive tractions cause, by virtue of microstruc-
tural inhomogeneities, localized regions of tension, which in turn, lead to crack
initiation. Thus, microstructural effects are responsible for cracking under com-
pression. Examples of microstructural inhomogeneities that can nucleate cracks
under compression are:

« Voids, around which tensile stresses are generated by compression. These
voids can have all kinds of shapes, but spheres and ellipsoids are idealized
configurations that lend themselves to mathematical analyses predicting
localized regions of tension.

« Boundaries between grains in materials having elastic anisotropy in such
a manner that elastic incompatibility stresses are generated.

« Brittle grain boundary phases that may fracture under shear resulting from
compression. An example is the glassy grain boundary phase in commer-
cial alumina. Ceramics often contain these phases, which are due to the
sintering agents that are added to material to facilitate densification during
processing.

« Second-phase particles that may have different compressibilities than the
matrix, leading to crack nucleation at the interface.

« Destruction of coherency between the matrix and second phases due to
differences of elastic properties.

Figure 14.57 shows the three principal mechanisms of compressive failure in
a schematic fashion. Spherical voids lead to tensile stresses when loaded in
compression. This problem was first solved analytically by Goodier [138], and
the maximum normal tensile stress is equal to (for uniaxial stress loading):
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Void sheets forming circular features in spall region: () microstructural
copper; (b) hydrocode computation by D. J. Benson. (Courtesy D. J.
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where o is the compressive traction (which is negative). When lateral confine-
ment is incorporated, the expression has to be modified. Sammis and Ashby
[139] provide a detailed treatment. A generalization of the spherical void is
the elliptical void, which represents a flaw of a more general shape. This was,
apparently, first treated by Griffith [163], and analytical solutions are obtained
by Brace and Bombolakis [140], Adams and Sines [141], Horii and Nemat-
Nasser [142], and Ashby and Hallam [143]. Figure 14.57b shows this con-
figuration (see also Fig. 14.65a). If y is the angle of the flaw plane with the
compressive axis, and p is the friction coefficient of the walls of the flaw, the
maximum stress intensity factor at the tip of flaw can be expressed as [143]

o (TAN (-2 a2 _ 1492
Ki= o,(3) [(1 01>(l+[.t) (l+01)y] (14.118)

where o is the compressive traction (negative) and o3 is the lateral confine-
ment. This maximum occurs for the orientation
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Nemat-Nasser and Deng [144] and Ravichandran and Subhash [145] consid-
ered an array of wing cracks (shown in Fig. 14.57b) in a ceramic subjected to
compression. They obtained closed-form solutions for the ceramic, for dynami-
cally growing interacting and noninteracting cracks, respectively. They applied
a form of the above equation to these cracks, varying both the stress state (uni-
axial stress and strain) and strain rate €. Lateral confinement (represented by
uniaxial strain) is very important and increases the compressive strength. The
microstructural parameters were introduced through the crack length 2a and
spacing 2w. The failure stress, which was dependent on a, w, ¢, and stress
state, was observed to increase significantly in the 10%~106 s-! range.

The third mechanism of flaw formation due to compression is shown in Fig-
ure 15.57c. It is due to the anisotropy of elastic properties of grains, and to
generation of dislocations and deformation twins, during loading. Internal stress
gradients are generated by these effects. These stresses can generate cracks, on
unloading, when the stress concentrations act on the grain boundaries.

In Chapter 1, Figure 1.3 shows a computation demonstrating how differences
in stiffness can generate internal tensile stresses. Figure 14.58 shows the stresses
predicted from a finite-element analysis performed, in plane strain, on a hexag-
onal grain and its surroundings. This configuration represents SiC, which has
one hexagonal structure and effective Young moduli which vary between 375
and 475 GPa, depending upon the orientation. The hexagonal grain represents a
compliant region (E = 375 GPa) whereas the material surrounding it represents
the stiffest orientation (E = 475 GPa). The stresses parallel and perpendicular
to the loading direction are shown in Fig. 14.58b and 14.58c, respectively. The
stresses 037 are compressive over the entire specimen and approximately equal
to the applied compressive stress of 4 GPa. The stresses ¢, on the other hand
(Fig. 14.58¢), vary considerably throughout the specimen. There is a region in
which ¢y, is tensile (>0); it is marked by hatching. Its maximum value is 0.2
GPa. This large stress can be responsible for the initiation of cracking. In the
configuration shown in Fig. 14.58, a transgranular crack can be generated, as
shown in Fig. 14.584.

Figure 14.59 shows a dislocation pile up at a boundary and the subsequent
incorporation of the dislocations into the boundary, forming a wedge-shaped
crack; this type of crack is called a Zener-Stroh crack. In ceramics, the stress
concentrations due to pile ups are not easily relieved by plastic deformation
in other slip systems; additionally, the grain boundaries have often a lower
strength than the grain interiors. Hence, the Zener-Stroh mechanism is prevalent
in creating microcracks, which, upon continued loading, develop into intergran-
ular cracks. Lankford [146] has shown that flaws can appear in ceramics when
loaded to a fraction of the fracture stress. Louro and Meyers [126] have shown
that dislocation activity was present in a small fraction of the grains in alumina,
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(a)
Figure 14.58 Finite element computation of stresses generated by compressive trac-
tions on a representative volume element of a SiC polycrystal; (a) representative volume
element and loading; (b) 022; ) on; (d) possible configuration for cracks. (From J.
Shih, M. A. Meyers, V. F. Nesterenko, and Chen. Acta Mat. to be published, 1999).

when loaded below the Hugoniot elastic limit (HEL).

A dislocation pileup can generate high tensile stress at a grain boundary.
Thus, when the material in unloaded, these tensile stresses can generate grain
boundary fracture. The normal stress parallel to the Burgers vector of a dislo-
cation is

Gb  xa(3x}+x3)
(1 - v)  (xi+x3)?

on= (14.120)

A pileup of n dislocations generates a stress. as shown by Eshelby [147] and
Stroh [148), of noy;. This superdislocation is situated at /4 from the pileup
head, where [ is the distance from source (0 head. If the grain size is D. the
distance x; is D/8, and the tensile stress acting on the boundary is
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Here, x, was assumed to be equal to —x,. For alumina, a typical ceramic (G =
163 GPa; v = 0.23;: b = 0.476 nm),and D= 10 um (x; = 1.2 um); thus the tensile
stress is approximately 12.6n MPa. Hence, a pile up with thirty dislocations
(n = 30) can generate a tensile stress of 380 MPa; this is the tensile strength of

alumina.

Rocks can be envisaged as ceramics with large defects and considerable
porosity. Micro, meso, and macrocracks abound, and two or more phases are
often present. The grain sizes are characteristically in the mm range. Thus, the
study of the dynamic behavior of rocks can elucidate fundamental mechanisms
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of deformation and failure. A fundamental energy-based analysis was devel-
oped by Grady [149]: the basic precept is that there is a balance between the
surface energy (generated by fragmentation) and the local kinetic or inertial
energy. The following expression was obtained for fragment size, d: -

4 [ @0k
pvgé

This expression was successfully applied to oil shale.
Experiments by Aimone, Meyers, and Mojtabai [150] on a quartz monzonite
rock subjected to a uniaxial strain plane compression pulse showed that:
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The mean fragment size decreases with increasing pulse duration at con-
stant pressure, and with increasing pressure at constant pulse duration.
This is shown in Figure 14.60a for quartz monzonite copper porphyry
subjected to different shock-wave pulses.

. The internal damage generated in rocks by the passage of a shock wave is

much larger than the damage simply observed by the fragments. The total
surface area of cracks generated internally is higher, by at least one order
of magnitude, than the surface area of the observed fragments. This can be
verified by converting the internal damage into an “equivalent fragment
size.” This was accomplished by using the expression D = 6/S,,. Figure
14.60b shows the measured surface area per unit volume (total area of
cracks). The “equivalent” particle size is shown in Fig. 14.60c. The dif-
ferences in particle size between Figs. 14.60a and c are of the order of
magnitude 10?. Thus, a great portion of the damage remains hidden inside
the fragments.
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Figure 14.59 (a) Dislocation pile-up at a grown boundary; (b) pile-up incorporation
into grain boundary and formation of Zener-Stroh crack.

The time dependent failure of rocks is consistent with the concepts of nucle-
ation, growth, and coalescence. If a description of how a shock wave propagates
through a rock is attempted, it has to incorporate these effects. The energy dissi-
pated by the wave in the fragmenting rock or ceramic is associated with the fol-
lowing energy storage mechanisms: generation of cracks, possible phase trans-
formation, twinning, interfacial defects, sliding of the crack surfaces, porosity
collapse, and dislocation motion; of these, the energy expenditure associated
with pore collapse is the highest dissipative component in rocks.

There have been reports of a failure wave propagating in glass and ceramics
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Figure 14.60 Effect of pressure and pulse duration on fragmentation of quartz mon-
zonite loaded in compression: (a) mean particle diameter as measured by physical par-
ticle separation (sieving); (b) surface over per unit volume, S,, measured from measure-
ment of microcracks on sectioned specimens; (c) “virtual” particle diameter, obtained
by converting S, into a particle size through d = 6/S,.

when impacted at high velocities. These reports by Kanel et al. [151] have been
confirmed. Raiser and Clifton [152,153] observed the failure wave in glasses,
Clifton [154] developed a theory. Experimental results by Senf and Strassburger
[155] seem to indicate that this failure wave is the result of the activation of
flaws by either the longitudinal or shear wave.
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Figure 14.61 Plastic microbuckling (kinking) in composite subjected to compression
along fiber/lamella axis (Adapted from Menig et al. [161]).
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Johnson and Holmquist [156] and Cosculluela [130,131] have developed
constitutive models that describe brittle materials under compressive loading.

The failure of composites under dynamic compressive loading has been dis-
cussed by Harding [154]. Composites have a complex response, which is not
treated in this chapter because of lack of space.

Plastic microbuckling [158-160] is one important compressive failure mech-
anism in composites, when the fibers, or lamellae, are oriented with the com-
pression axis. This phenomenon, first analytically modeled by Argon [158],
is shown schematically in Fig. 14.61. The fibers undergo a “kinking” which
reduces the overall deformation energy. Argon [158] developed a formalism
for the calculation of the compressive strength of laminates based on kinking,
or plastic microbuckling. The angle « (see Fig. 14.61(a)) is approximately 45°,
and the strength of the composite is given by:

o=

T [1 bG A 1 (21ra1(1 - u)) + E.Af (_t_,_

T i 4122
8o | " 2mar - v) bG.AB 487 b)] (14.122)

where 7 = shear strength of the matrix
8, = angle between the reinforcement and the loading axis (see Fig.
14.61(a))
E, = Young’s modulus of the reinforcement
t, = lamella thickness
G, = shear modulus of the composite
v = Poisson’s ratio
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and 2(a) and 2(b) are the kink nucleus dimensions. When Af — 0, at the onset
of collapse, the second and third terms in Eq. (14.122) reduce to zero and the
equation simplifies to:

N

o (14.123)

I
o
This analysis has been followed by significant advances due to Evans and Adler
[159], and Fleck et al. [160]. This is one of the mechanisms of composite failure,
and strain rate effects have not been investigated, heretofore. Menig et al. [161]

observed this phenomenon in abalone shell subjected to compressional (both
static and dynamic) testing.

14.7.2.2 Compressive Failure of Tungsten

The results obtained by Diimmer et al. [162] on tungsten subjected to compres-
sion loading are an excellent illustration of the dramatic effect that the strain
rate can have on the failure mechanisms and ductility of a material. Tungsten
is known to undergo a ductile-to-brittle transition as the temperature is low-
ered or the strain rate is increased. It will become clear, from the description
presented, how this happens. Figure 14.62 shows representative areas from lon-
gitudinal sections for tungsten (annealed at 2600°C) and deformed quasi-stati-
cally (1073 s7!) to a strain of approximately 0.25 and dynamically to a strain
of 0.052 at a strain rate of 103 s~! (loading direction is top to bottom). The
amount of damage accumulated within the specimen tested dynamically (Fig.
14.62b) is much higher than for the one deformed quasi-statically (Fig. 14.62a).
Notice that the strain in the specimen deformed dynamically is one fourth of
the quasi-statically deformed specimen. The damage occurs primarily as grain
boundary debonding, which is caused by impurity segregation; primarily inter-
granular cracks characterize the annealed material. An axial macrocrack is indi-
cated by arrow 1. The right of the image shows misaligned microcracks that
are frequently related to twin-grain-boundary intersections (arrows 2). For the
quasi-statically tested specimen, the shape of the stress-strain curves and the
presence of low damage after straining above 0.20 indicates a typical ductile
process. Figure 14.63 provides a quantitative analysis of crack density for the
two strain rates. These results show that the damage by micro- and macro-
cracking increases with increasing strain and strain rate.

The evidence for a wing-crack formation mechanism in W is shown in Figure
14.64, taken from the longitudinal section of the sample that was deformed
to a strain of 0.05 at a rate of 10° s~!. Two grain-boundary debonds nearly
parallel to the loading axis (marked by arrows 3) are linked by a third tilted
debond (marked by 1). The step in the plane of the tilted crack (marked by 2)
reveals the sliding displacement between the adjacent grains. It is noted that
this displacement was initially prevented by the cohesive strength of the grain
boundaries that finally separated. Furthermore, it is seen that the displacement
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Figure 14.62 (a) Longitudinal section of W annealed at 2600°C, deformed to a strain
0f 25% (¢ = 1073 s71); () longitudinal section of annealed W at 2600°C, deformed to
52% (e=4-10% sy,

of the interfaces of this “sliding crack™ created stress concentrations at its tips
(marked by 3) producing tension at the points where these tips joined the grain
boundaries that failed. It should be emphasized that the mechanism shown in
Figure 14.64 is a departure from the classical “wing crack” model of Ashby
and Hallam [143]. The directions of crack propagation are, in the present case,
dictated by grain-boundary orientation and not, as in the former case, by the
direction of the maximum principal stress. This will become evident when the
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Figure 14.63 Damage in W annealed at 2600°C; showing a profound increase in dam-
age, for increasing strain rates from 1073 to 103 s™!. Note that strain at 10~3 s~! is
26%, whereas at 103 s~ it is equal to 2.5%. L is the size of a grain-boundary facet.

Ashby-Hallam equation is applied to the present case by setting the angle of
crack propagation (y in Figure 14.65a) as the one for the grain boundaries, in
an ideal arrangement.

Tension is necessary to initiate the vertical cracks perpendicular to the
applied compressive load and gives rise to the mechanism that was first pro-

posed by Griffith [163]. Due to the net shear stress sliding of the two crack sur-
faces

Figure 14.64 Intergranular cracks (3) that are produced by sliding of grain boundary
(see offset 2).
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Figure 14.65 (a) Schematic of wing crack formation from the tips of a tilted sliding
crack (b) K, acting at a wing crack tip vs. normalized crack length L, for friction
coefficients u = 0.1, 0.3, and 0.5.
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will take place. This leads to a local tensile stresses at the tips of the micro-
crack that will, eventually, nucleate two wing cracks. The Ashby-Hallam [143]
model describes the influence of the orientation (¥) of the preexisting crack and
its length 2a on the stress intensity factor K| acting at the tip of a wing crack
oriented at an angle 6 to the sliding microcrack. In this model, the wing cracks
are assumed to nucleate once the stress intensity factor at the tip reach its critical
value, K. Figure 14.65a shows schematically how the wing cracks nucleate
and grow from an initial sliding crack. Under uniaxial compressive loading and
in the absence of a lateral stress (see Eq. (14.118)), the mode I stress intensity
factor Ky acting at the tip of a wing crack can be written as,

K= % 01\/172[;;(1 - cos 2y) - sin 2¢/]

. 0 [ B.L+(1+L)'2
- sin 0 cos > { A+ 77 . (14.124)

where o = applied stress _
p = coefficient of sliding friction
L’ = wing crack length
Bn = constant (= 0.4).

The frictional force due to the normal force (Coulomb friction) acting on the
microcrack surfaces resists sliding and the resolved shear stress due to the exter-
nal applied stresses acts as the driving force. The stress intensity factor K
decreases with increasing wing crack length (1) suggesting stable crack growth
with increasing load. The crack length 2a is taken to be 50 um (equal to the
grain facet size), and 6 and y to be 60°. These angles are dictated by the geom-
etry of the grain boundaries. The coefficient of friction u for tungsten is taken
to be 0.1, 0.3 and 0.5, which are typical sliding friction coefficients for hard
metals. The values for 2a, Y and 6 were inserted into Eq. (14.24) to calcu-
late the critical mode I stress intensity Kj. at the tip of a representative sliding
crack at crack initiation. Figure 14.65b shows the results for an applied com-
pressive stress equal to 1,200 MPa. This is the stress at which microcracking
by grain-boundary debonding starts. For L’ = 0 (i.e., no preexisting cracks at
flaw extremities) the value of K. varies between 0.6 (u = 0.5) and 3.7 MPa
m'/2 (u = 0.1). The fracture toughness for the intergranular failure appears to
be much smaller than transgranular failure in tungsten, typically 50 MPa m'/2.
This is due to grain boundary embrittlement.

Damage by nucleation wing cracks along the weak grain boundaries does
not appear until the stress level reaches o = 1,200 MPa. The quasi-static stress
strain curve (Figure 14.66a) exhibits considerable hardening during early stages
of deformation typical of annealed materials. Also, note that the material yields
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around 0.75 GPa and-does not develop damage until strains of approximately
0.25 and has hardened to stress level of 1.2 GPa. Beyond this stress level, the
material fails by columnar splitting and microstructural characterization reveals
that material fails by intergranular cracking (see Fig. 14.62). In the case of
dynamic stress-strain response, it is seen that the material yields at around 1.2
GPa and material develops considerable damage even at very small strains of
0.02 (Fig. 14.62). This is readily verified by applying one of the constitutive
equations presented in Section 14.3, Zerilli-Armstrong, MTS, or any equivalent
model.

The experimental observations indicate that there are three competing defor-
mation mechanisms in tungsten: slip, twinning, and grain-boundary decohesion.
Due to the strain-rate sensitivity of the flow stress, twinning and grain-boundary
décohesion are the favored mechanisms under high strain-rate conditions.

Under quasi-static loads the heat-treated tungsten exhibits a compressive
strength of 0.75 GPa (Figure 14.66a). It is assumed that the grain boundary
strength is strain-rate independent and approximately 1.2 GPa. Figure 14.66a
shows these three effects in a schematic manner. The values oic and oy, are the
lower and upper boundary, respectively, which define a stress region in which
damage is accumulated. At g damage initiates; at oy the amount of damage
reaches a level that leads to catastrophic failure of the specimen. Under quasi-
static strain rates (1073 s71), the level o is reached after plastic deformation to
the strain of €4, (~15% in the present study). Up to this point the deformation
is governed by plasticity. Under high strain rates (4 X 10° s7!), the yield stress
exceeds the stress level o;. thus, flow is initiated by damage initiation. Once
the stress level oy is exceeded the specimen fails catastrophically. The striking
feature shown by Figure 14.66a is that increasing the strain rate reduces the
strain at which damage is initiated from €41 to €q2.

The grain-size and strain-rate effects on the slip, twinning, and grain-bound-
ary decohesion stresses render these three mechanisms competitive deformation
mechanisms and affect significantly the material response. It is known that both
the flow and twinning stress can be described by a Hall-Petch relationship as
a function of grain size; this is seen in Section 14.4. Also, the grain-boundary
decohesion stress decreases with grain size. Thus, the rates of change in slip,
twinning, and grain-boundary cohesive stress with grain size dictate the actual
deformation mechanism. The effect of grain size on the grain-boundary deco-
hesion stress is due to the increase in impurity concentration (P, S, and O) at
the grain boundaries. Due to the low solubility for interstitial atoms in tung-
sten, the total amount of embrittling grain boundary segregates is expected to be
nearly the same in each heat treatment condition. The grain-boundary impurity
concentration cgg in mol/unit area then is inversely proportional to the grain
boundary area per unit volume Av(Ay = 3/D). Thus,

cgg="n —2‘_ (14.125)
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Figure 14.66 (a) Experimental compressive stress-strain curves at two different strain
rates; o;c — initiation of damage; dfc — catastrophic failure of specimen; (b)
schematic representation of different micromechanisms (slip, twinning and grain-bound-
ary decohesion) as a junction of grain size and strain rate.

Where n is the impurity content in mol/unit volume and D is the grain size. A
diminution in the grain-boundary decohesion stress Aadgp(cgs) is caused by an
increase in cgp. For simplicity it is assumed that Ao gp increases linearly with
cgg- The grain boundary decohesion stress o can be then described as:

0GB = Uic*AO'GB(CGB) and GGB=GiC—k-D (14.126)
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Where o;. is the decohesion stress of a “clean boundary” and k is a constant.
The slope & is given by the total amount of embrittling segregates and their
embrittling activity. Figure 14.66b shows the grain-boundary decohesion stress
oGp, the twinning stress and the slip stress in a common stress-versus-D~'/2
plot. It is also well known that the strain-rate dependence for twinning is much
less significant than for slip. Armstrong and Worthington [38] demonstrated that
the Hall-Petch slope for twinning k; is 2-5 times the Hall-Petch slope for slip
in BCC metals. This leads to slip, twinning, and grain-boundary decohesion
being competing mechanisms of flow/failure. In Figure 14.66b four transitions
are marked by: Duwin1, Diwin2s Deoh 1> and Dcona. It is assumed for simplicity
that grain-boundary decohesion and twinning are independent of strain rate.
The strain-rate sensitivity of slip in BCC metals is schematically shown by the
parallel lines at 1072 and 10° s™'. Different regimes of response are obtained
as a function of strain rate and grain size:

At é = 1073 5! the deformation mechanism for grain sizes D > Duwin1 is
twinning, for Deon1 <D < Diwin1 slip, and for grain sizes D < Dcoh1 it is
grain-boundary decohesion.

At ¢ = 10% s-! twinning is the deformation mechanism for grain sizes D >

Duwin2, slip for Deon2 < D < Duwin2, and grain-boundary decohesion for
D < Dcon2-

There are complicating factors that affect this simple explanation; for exam-
ple, twin-twin intersections lead to the initiation of transgranular fracture.

14.8 SUMMARY AND CONCLUSIONS

The observations reported in this chapter, as well as extensive information in
the literature, indicate that microstructural aspects are of utmost importance in
the dynamic deformation and failure of materials.

The mechanical models have progressed to the point where they incorporate
the most important physical phenomena in dynamic deformation and failure.
Advanced computational methods (especially finite elements, finite differences,
and molecular dynamics codes) can capture the complex phenomenology of
dynamic deformation and failure. In parallel, analytical, closed-form solutions
have been developed for a large number of loading situations and microstruc-
tural configurations.

In dynamic deformation, dislocation and twinning dynamics can lead to real-
istic predictions of the plastic response of metals. In the shock-wave deforma-
tion regime, there still exists considerable uncertainty regarding the nature of
the micromechanical processes due to the extreme difficulty of observation. The
competition between slip and twinning is an important consideration in dynamic
deformation.

Dynamic failure can be divided into three classes:
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1. Dynamic failure by tension; spalling (uniaxial strain state) and uniaxial
stress state.

2. Dynamic failure by shear; shear instability is the precursor to this failure
mode.

3. Dynamic failure by compression: ceramics, rocks and brittle metals (cast
iron, tungsten, intermetallic compounds) are especially prone to failure
under compressive loading.

We summarize below the most important microstructural effects for these three
classes of failure. All microstructural variables play a role in the dynamic failure
of materials. The most important variables are

¢ Grain size

* Presence, density, morphology, and size and distribution of second-phase
particles

o Texture (not mentioned in this chapter)

* Impurity atoms and their distribution (e.g., segregation at grain bound-
aries)

* Crystallographic structure (which can be changed by heat treatment, e.g.,
quenching of steel)

» Prestrain (e.g., annealed vs, shock-hardened material)

* Intergranular phases (e.g., glassy phase at grain boundaries of ceramic)

» Voids (e.g., porosity in the ceramics) and microcracks

We did not discuss in this chapter mechanochemical aspects, in which the inter-
play between chemistry and dynamic deformation can generate a surprising
range of unexpected phenomena. Displacive phase transformations and exother-
mic chemical reactions are deeply affected by the stresses and strains and
another chapter would be needed to discuss these effects.

A most important conclusion that can be derived, and is indeed illustrated,
in this chapter is: The highly complex and varied microstructures observed
in dynamic deformation and failure differ significantly from their quasi-static
counterparts and are the result of competing deformation and failure processes
that have different strain rate, stress state, and temperature sensitivities: slip,
twinning, dynamic recrystallization, aging, displacive phase transformations,
grain boundary decohesion, cleavage, void opening. These mechanisms com-
pete: heat transfer and wave propagation also influence the sequence of pro-
cesses.
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