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Abstract

The effect of grain size on the mechanical response of polycrystalline metals was investigated computationally and applied to the

nanocrystalline domain. A phenomenological constitutive description is adopted to build the computational crystal model. Two

approaches are implemented. In the first, the material is envisaged as a composite; the grain interior is modeled as a monocrystalline

core surrounded by a mantle (grain boundary) with a lower yield stress and higher work hardening rate response. Both a quasi-

isotropic and crystal plasticity approaches are used to simulate the grain interiors. The grain boundary is modeled either by an

isotropic Voce equation (Model I) or by crystal plasticity (Model II). Elastic and plastic anisotropy are incorporated into this

simulation. An implicit Eulerian finite element formulation with von Mises plasticity or rate dependent crystal plasticity is used to

study the nonuniform deformation and localized plastic flow. The computational predictions are compared with the experimentally

determined mechanical response of copper with grain sizes of 1 lm and 26 nm. Shear localization is observed during work hardening

in view of the inhomogeneous mechanical response. In the second approach, the use of a continuous change in mechanical response,

expressed by the magnitude of the maximum shear stress orientation gradient, is introduced. It is shown that the magnitude of the

gradient is directly dependent on grain size. This gradient term is inserted into a constitutive equation that predicts the local stress–

strain evolution.

� 2004 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The mechanical behavior of nanocrystalline metals
has been the object of recent intense study [1,2]. Ex-

perimental, analytical, and computational investigations

are revealing the detailed mechanisms of plastic defor-

mation. A universal observation is that the Hall–Petch

slope shows a significant decrease as the grain size is

decreased beyond 1 lm level (e.g. [2]).

1.1. Plasticity of crystals

The early study of single crystal deformation can be

traced back to the experiments by Taylor and Elam [3].
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A simplified polycrystal model was proposed by Taylor

[4], who assumed that each grain in the crystalline ag-

gregate was subjected to the same average strain as the
whole matrix. This model has been widely adopted in

the study of large deformation of polycrystals (e.g.,

Bishop and Hill [5], Bishop [6], Dillamore and Kaoth [7],

and others). Hill and Rice [8] used an elastic–plastic

rate-independent model to describe the behavior of

crystal deformation. Asaro and Rice [9] found, in single

slip deformation, that localized shear slip occurs as the

plastic hardening modulus for this slip system ap-
proaches a small critical positive value. Thus, they

proposed a constitutive model incorporating a deviation

from the Schmid law.

Another approach to the finite strain of polycrystals

is the development of self consistent models. The early

work was done by Kr€oner [10] and Budianski and Wu

[11]. This was followed by Berveiller and Zaoui [12] and
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Fig. 1. (a) Two adjacent grains having slip systems S1 and S2 activated

by imposed compressive tractions. (b) Slip systems S1 (interior of

Grain 1) and S2 (interior of Grain 2) active far from boundary. Slip

systems activated in grain-boundary vicinity: S01, S
00
1, and S1 in Grain 1

and S02, S
00
2, and S2 in Grain 2.
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Molinari and coworkers [13,14]. Additional work on the

constitutive description of crystal plasticity focused on

experiment-based refinement and on incorporating the

temperature effect. Recently, the entire subject was re-

viewed by Lubarda [15].
Texture evolution has been successfully modeled and

correctly reproduces experimental results. Lin and

Havner [16] modeled the texture evolution in an FCC

crystal through rotations in an inverse pole figure. For

instance, Anand and Kalidindi [17] applied the crystal

plasticity formalism to predict earing in deep drawing

operations and compared their computed textures with

experimentally observed ones. The subject is compre-
hensively treated by Kocks et al. [18].

Beside the aforementioned research, numerical simu-

lation provides another powerful means of exploring the

material behavior and the interaction of polycrystals.

Peirce et al. [19,20] used a planar double slip model

with viscoplasticity to simulate the nonuniform stress

localization of a single crystal plate under tension (finite

element method). Two slip systems are involved in a
state of plane strain, since the third strain component is

zero. Later, an idealized polycrystal model was intro-

duced to investigate the intercrystal stress and texture

evolution by Harren and Asaro [21]. Recently, the nu-

merical research of polycrystal plasticity has migrated

toward three-dimensional modeling, e.g. [22,23]. Barbe

et al. [24] built a three-dimensional microstructure with

Voronoi tesselation, but the simulation is limited to
strains smaller than 0.002.

1.2. Grain-size effects

All the aforementioned models fail to predict a grain-

size dependence of yield stress and work hardening. This

is due to the fact that the problem is self-similar. Unless

a scaling or gradient parameter is introduced, there can
be no grain size dependence. Thus, the prediction of

yield stress and work hardening as a function of grain

size has escaped the reach of computational models.

This is indeed surprising, since these models are rather

complex and claim to predict polycrystalline behavior

quantitatively. The effect of grain size on the yield stress

can be brutal, as shown by Armstrong [25]. For instance

the yield point of copper increases from approximately
25 to 135 MPa when the grain size is reduced from 1 mm

to 1 lm.

The difficulty in predicting grain-size effects arises

from the differences in physical processes occurring

within the grain-boundary region and grain interiors.

Ashby [26] postulated geometrically necessary disloca-

tions to account for the inherent difference in the accu-

mulation of plastic strain between the grain-boundary
region and grain interior. He described the deformation

of grain interiors as being primarily by single slip; in

contrast, in both sides of the grain boundary, the lattice
undergoes severe rotations, triggering secondary slip.

Therefore, the work-hardening rate of regions adjoining

the grain boundary is higher than in the grain interiors.

Yao and Wagoner [27] carried out systematic experi-

ments on aluminum multicrystals and quantitatively
established the relative importance of different nucle-

ation sites for slip. For the 84 slip bands observed, 43%

nucleated at grain boundaries and only 13% at grain

centers. Since the specimens contained from only 1 to 6

grains, a large fraction of the bands initiated at the

specimen edges or in undefined locations (37%). These

results confirm the importance of grain boundaries as

sources of slip. Similar results were obtained, albeit
without quantitative estimates, by Suits and Chalmers

[28], Worthington and Smith [29], and Hook and Hirth

[30]. Delaire et al. [31] performed tensile experiments on

a copper multicrystal and demonstrated that there is a

much greater tendency for slip in two or three systems in

regions close to boundaries. In addition to the afore-

mentioned effects, there are two factors contributing to

the differences:
(a) The ease of dislocation nucleation at grain bound-

aries is accentuated; this may result in a lower yield

stress.

(b) The maximum shear stress direction changes close

to the grain boundary, because of elastic anisotropy.

This factor was considered by Meyers and Ash-

worth [32].

Fig. 1 shows, in a schematic fashion, the effect of a grain
boundary on evolution of plastic deformation. Far from



Fig. 2. (a) Decomposition of the total deformation gradient. (b) Planar

double slip system of single crystal metal specimen under tension.
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the boundary (the grain-interior region) and assuming

single slip in both grains, slip system S1 is activated in

Grain 1, whereas slip system S2 is activated in Grain 2;

see Fig. 1(a). These are the systems having the highest

resolved shear stress in the respective grains. In the vi-
cinity of the grain boundary, the resolved shear stress

orientation is altered due to elastic anisotropy con-

straints. This leads to the activation of sources in/adja-

cent to the grain boundary and slip in systems S0
1 in

Grain 1 and S0
2 in Grain 2. The rotation of the angle of

maximum shear stress with the loading axis leads to

cross-slip; this is schematically shown by systems S00
1 and

S00
2 in Grains 1 and 2, respectively. The net result is that

this region hardens at a higher rate than the grain

interiors.

There are efforts at incorporating this gradient work

hardening into a computational framework. Fu et al.

[33–35] introduced a discrete layer along the grain

boundary with a high flow stress and low work hard-

ening. In the first approach [33,34], an ideal plastic re-

sponse was assumed in the grain-boundary region. This
was later [35] rendered more physically significant by

using a high work-hardening rate and a saturation stress

(Voce equation). The yield stress of the grain-boundary

layer is lower than that of the grain interior. Kim et al.

[36] modeled the plastic deformation of nanocrystalline

metals by constitutive equations based on dislocation

density evolution and including a contribution from

diffusion controlled plastic flow. Estrin et al. [37] pro-
posed a crystal plasticity model including gradient terms

for a double slip geometry. Diffusion-like second deriv-

ative terms were incorporated to account for dislocation

cross-slip. Van Swygenhofen and coworkers [38,39] ap-

plied MD simulations to nanocrystalline materials and

demonstrated that grain boundaries can accommodate

strain by sliding and emission of partial dislocations.

In this paper, the model proposed by Fu et al. [33–35]
is developed further. The ease of dislocation generation

at the grain boundaries is represented in a novel manner

by considering the grain-boundary region as having a

yield stress lower than the grain interior. Crystal plas-

ticity is introduced to treat the evolution of mechanical

strength in a more realistic manner. These past models

[33–35] use two discrete layers (core and mantle ap-

proximation). This was only a first model, and did not
incorporate two important effects: (a) the slip and ro-

tation of the lattice, and (b) the concept of rapid work

hardening in the grain-boundary region. This is the

primary goal of this report. Single crystal viscoplasticity

is used, incorporating the combined effects of grain

boundaries and grain interiors to provide a novel

viewpoint. The approach introduced by Fu et al. [33–35]

is now generalized by treating grains as individual single
crystals, with defined slip systems. The scaling parame-

ter introduced is the grain-boundary layer, which varies

in a non-linear way with grain size. Thus, a continuous
hardening model is introduced, which is computation-

ally more complex. It is based on the change in orien-

tation of the angle of maximum shear stress throughout

the polycrystalline aggregate, which can be directly re-

lated to the work hardening. This gradient term is grain-
size dependent.
2. Kinematics of crystal deformation and constitutive

description

The isothermal, rate-dependent crystal plasticity

model is introduced below. The kinematic basis for the
material deformation is shown in Fig. 2(a). The defor-

mation gradient of the material is decomposed into two

parts (multiplicative decomposition by Lee and Liu

[40]):

(a) Plastic deformation: Plastic flow through the lattice

due to dislocation motion.

(b) Non-plastic component: Elastic deformation and rig-

id-body rotation of the lattice with material embed-
ded in it.

According to the above decomposition, the deformation

gradient F can be expressed as

F ¼ F � � F P; ð1Þ
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where F P is the deformation gradient from crystallo-

graphic slip and F � ¼ V eR� accounts for the non-plastic

part (including elastic stretching and the rigid body ro-

tation of the lattice). The initial lattice vectors of an

active slip system a, the slip plane normal n and the slip
directions, are stretched and rotated with the lattice as

(Fig. 2(b))

sðaÞ ¼ F � � sðaÞ0 ; ð2Þ

nðaÞ ¼ nðaÞ0 � F ��1: ð3Þ

In the-rate dependent formulation, the slip evolution

is not described by the loading condition as assumed in

rate-independent models [41]. Instead, the visco-plastic

slip system is described by a power relationship between

stress and strain rate. A successful expression is the

power relationship used by Hutchinson [42] for a slip
system a; it has the form

sðaÞ ¼ gðaÞ
_cðaÞ

_a

 !m

sgn
sðaÞ

gðaÞ

� �
; ð4Þ

where _a is the reference slip rate, m is the rate sensitivity

parameter, (the limit of m ! 0 is the rate independent

case). The current slip resistance on the system a is gðaÞ

and the resistance of this slip system is initially the critical

resolved shear stress. The following evolution equation

for the current strain hardening state gðaÞ can be used:

gðaÞ ¼
Xn
a¼1

hab _cðbÞ: ð5Þ

Eq. (5) represents the orientation effect on slip system a
for plastic slip to occur. The hardening matrix hab
adopted by Hutchison [42] and Peirce et al. [19,20] is

hab ¼ ½qþ ð1� qÞdab�hðcÞ; ð6Þ
where the q is the ratio of latent hardening to self-
hardening rates. Its value is estimated to be between 1

and 1.4 from the experimental data [44], and

hðcÞ ¼ h0 sec h
h0c

ss � s0

� �
; ð7Þ

where h0 is the initial hardening modulus and ss is the
saturated shear strength. Eq. (7) is based on the single

slip law, which comes from the approximation of ex-

perimental data

sðcÞ ¼ s0 þ ðss � s0Þ tanh
h0c

ss � s0

� �
; ð8Þ

where the sðcÞ is the current value of the flow stress in

single slip. Extending the application of Eq. (8) to the

multi-slip case, c is defined as the cumulative shear strain

on all slip systems, which is defined as

c ¼
Xn
a¼1

jcðaÞj: ð9Þ
3. Results and discussion

Three models were used to treat the problem. They

represent increasing departures from the earlier Fu et al.

[33–35] approach, incorporating a more realistic re-
sponse. The initial assumption for the grain-boundary

response [33,34] was ideally plastic with zero work

hardening; a second approach [35] used a Voce equation

with high work hardening rate. In these early papers, the

elastic deformation was assumed to be quasi-isotropic;

three types of grains with different (but isotropic) elastic

constants, were considered.

Three models are considered here. Model I uses a
quasi-isotropic (or ‘‘pseudocubic’’) approach similar to

Fu et al. [35]. Within the grains, crystal plasticity (see

Section 2) is introduced. Model II incorporates full

elastic anisotropy, with the cubic elastic stiffness (C11,

C12, and C44). The grain interior is modeled by crystal

plasticity, which is more realistic than the isotropic

response assumed earlier by Fu et al. [35]. In Model

III the mechanical response is assumed to vary con-
tinuously. This is done through the change in orien-

tation of the angle of maximum shear stress; the

magnitude of the gradient can be incorporated into the

work hardening, because it expresses a frequency of

cross-slip.

3.1. Model I: Crystal plasticity for grain interiors; Voce

equation for grain boundaries

In this model, the grain interiors are assumed to have

three orientations. They were modeled with three crystal

orientations given by Diehl [45], with an extension (at

higher strains) by Suzuki et al. [46]. The grain-boundary

regions are governed by a Voce equation with J2 flow

theory, as described in Fu et al. [35]. The two slip di-

rections of the three groups FCC crystals are assumed to
be / ¼ w ¼ 30� (Fig. 2(b)), and the FCC cell has to be

rotated according to the specified crystal orientations as

shown in Fig. 2(b). The crystal properties for this model

and the orientation of the crystals are specified with the

simplified two-dimensional assumption. The three ori-

entations considered correspond to the orientations C23,

C26, and C30 from Diehl [45]. The rotation angles for C23

and C26 are assumed to be 45� because their locations on
crystal stereographic projection positions are close to

[1 1 1] and [1 1 0], respectively. For C30, it is assumed to

be 90� because it is close to the location of [1 0 0]. The

elastic response is assumed to be ‘‘pseudocubic’’ and

three sets of Young’s moduli are used: E23 (for C23), E26

(for C26), and E30 (for C30). Their values are given in

Table 1. They were calculated from the compliance

matrix for copper, expressing Eijk according to the
standard relationship [47].

The direction cosines are l1, l2, and l3; s11, s12, and s44
are the elastic compliances.



Table 1

Parameters for the grain interiors of Model I

Diehl orientation E (GPa) m _a s0 (GPa) ss h0

C23 164.3 0.3 0.001 0.1643 1:8s0 8:9s0
C26 115.2 0.1152 1:8s0 8:9s0
C30 79 0.079 1:8s0 8:9s0
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1

Eijk
¼ s11 � 2 s11

�
� s12 �

1

2
s44

�
l21l

2
2

�
þ l21l

2
3 þ l22l

2
3

�
:

ð10Þ

In this model, the latent hardening effects are not in-

cluded, and therefore q is set equal to 1; this corresponds

to the self-hardening condition.

The grain configuration was established by Voronoi

polyhedra [43], as described by Fu et al. [35]. For a grain
size D ¼ 1 lm, the original configuration is shown in

Fig. 3(a). The three colors stand for the three different

orientation groups, with the soft C30, medium C26, and
Fig. 3. Compression of polycrystalline copper (D ¼ 1 lm): (a) original distrib

green: C23); (b) and (c) von Mises stress contours for �eP ¼ 0:15 and �eP ¼ 0:
�eP ¼ 0:43, where �eP is the equivalent plastic strain.
hard C23 orientations colored red, orange, and yellow–

green, respectively. Fig. 3(b)–(c) show the evolution of

the von Mises stress distribution in the crystals and

Fig. 3(d)–(f) show the equivalent strain distributions. In

Fig. 3(b) and (c), the stress rises rapidly, not only in the

grain boundary but also inside some of those crystals

with harder elastic orientations. The stress is concen-
trated initially near the central area, as seen in Fig. 3(b).

With further compression, all the crystal lattices begin to

reorient, and the high stress areas begin to coalesce.

Gradually, a shear band is formed, as shown in Fig. 3(c)

and (f), and the grain boundaries are subjected to severe
ution of three groups of grain interiors (red: C30, orange: C26; yellow–

43. Equivalent strain contours for [28] (d) �eP ¼ 0:047 (e) �eP ¼ 0:15 (f)
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shear distortions, resulting in the destruction of the

grain boundary structure. This plastic shear flow pene-

trates through the grain interiors as shown in Fig. 3(c)

and (f). In comparison with earlier results of Fu et al.

[35], the strain is more localized in Model I; the locali-
zation effect is much stronger and the difference between

the grains that are located inside and outside of the

shear band are larger. The equivalent stress–strain curve

is shown in Fig. 4, and the predicted values are about

40% higher than that those obtained earlier by Fu et al.

[35]. One possible reason could come from the assumed

approximate orientation directions for C23, C26, and

C30, since they are not the real tri-dimensional orienta-
tions. In conclusion, Model I reveals a more non-

uniform failure evolution process in the microstructure,

that is closer to microscopic observations.

3.2. Model II: Crystal plasticity for grain boundaries and

interior

In this model, both the grain boundaries and grain
interiors are modeled with crystal plasticity, and the

grain-boundary region surrounding the grain interior

has the same orientation as the grain interior. Thus,

each boundary region is split into two longitudinally,

each half with the same characteristics as the grain in

which it is embedded. In Model I, the boundaries were

considered a separate region. In contrast to Model I,

which uses three orientations, Model II uses fifteen sets
of randomly generated, two-dimensional orientation
Table 2

Parameters for the grain interiors and grain boundaries of Model II

Elastic constants (GPa)

C11 C44 C12

Grain interior 168.4 75.4 121.4

Grain boundary 168.4 75.4 121.4

Fig. 4. Computed stress–strain curve for Model I (D ¼ 1 lm).
angles. The true elastic anisotropic properties for the

cubic symmetry copper are also used, with the material

parameters for grain boundaries and grain interiors as

given in Table 2.

The reference shear rate is _a ¼ 0:001. In order tomodel
the larger concentrationof dislocation sources in the grain

boundary, the initial shear strength, s00, of the grain

boundaries is assumed to be lower than that of grain in-

terior, s0. Since the dislocation cross-slip and interactions

are more frequent in this region, the saturation shear

strength, ss, is taken as double that of the grain interior.

Polycrystals with two grain sizes (D ¼ 1 lm and

D ¼ 26 nm) were simulated and compared to experi-
mental results. Fig. 6(a)–(d) shows the evolution of the

equivalent plastic strain distributions at the volume av-

eraged equivalent plastic strain �eP ¼ 0:0033, 0.035,

0.1432, 0.4141 for D ¼ 1 lm. Fig. 6(e)–(h) shows the

corresponding equivalent stress distributions. From

Fig. 6(a) and (e), it can be seen that, at the early stages of

deformation, the stress in grain boundaries are lower

than in the grain interiors while the strain is larger, since
the initial shear strength of grain boundaries is assumed

to be lower. The higher strain zones distributed along

the adjacent grain boundaries join due to the higher

stress from the different elastic anisotropies of adjacent

crystals. It then forms a network structure of grain

boundaries. From Fig. 6(b), it is seen that the localized

strain zone continues to grow and the grain interiors

surrounded by these grain boundaries start to work
harden. The strain inside these grains increases, espe-
Plastic constants (GPa)

s0; s00 ss h0

0.168 0.1848 0.336

0.1512 0.3628 1.0584

Fig. 5. Mechanical response for grain interior and grain boundary for

Model II.



Fig. 6. Compression of polycrystalline copper (D ¼ 1 lm) Model II, right column shows equivalent strain: (a) �eP ¼ 0:0033; (b) 0.035; (c) 0.1432; (d)

0.4141, left column; (e)–(h) shows the corresponding von Mises stresses; colors describe stress and strain levels.
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cially at the triple point junctions of the grain bound-

aries. In Fig. 6(f), regions with low stresses have high

levels of plastic strain, and vice versa, due to the dif-

ferences in the stress–strain relations between the crys-

tals and their boundaries. As the compression continues,

Fig. 6(c) shows the region of peak strain (red area), in

Fig. 6(b), which begins to slide, and coalesces with other

regions of large strains to form a shear band along the
grain boundaries. Finally, in Fig. 6(d), several strong

shear bands are formed. Fig. 7 shows close-ups at
effective strains �eP ¼ 0:1432 and �eP ¼ 0:4141. The initi-

ation and propagation of localization can be seen. It

should be noted that this localization occurs concur-

rently with hardening.

For the D ¼ 26 nm case, the material is composed

mainly of grain boundary. Based on the aforementioned

weaker initial shear strength assumption, the initial

strain localization occurs in the grain boundaries as
shown in Fig. 8(a), especially near the intersections

among different crystals. Fig. 8(a)–(d) have the same



Fig. 7. Close-up (marked boxes in Fig. 5), showing detail of plastic

deformation for two imposed strains: (a) �eP ¼ 0:1432; (b) �eP ¼ 0:4141.
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strains as in Fig. 6(a)–(d). It is apparent in Fig. 8(b) that

the strain localization is not as strong in the grain in-

terior as in the D ¼ 1 lm case due to the larger amount

of rapidly work hardening grain boundary structures,

which sustain and distribute the compression loading. In

Fig. 8(c) and (d), the localized regions gradually join and

regions of localized strain appear in the matrix where

the stress is clearly concentrated. In Fig. 8(d), shear
band is formed and it passes by, or through, a series of

softer grain interiors. By comparing the scaled contour

plot of Fig. 6(d) and Fig. 8(d), it can be seen that the

final localized shear band often penetrates through the

boundaries between the grain interiors and grain

boundaries, and therefore, areas where there is a dis-

continuity of mechanical properties are the weakest part

of the whole material. Fig. 9 shows a close-up of the
shear localization region in Fig. 8(d).

The crystal orientation of D ¼ 26 nm for the initial

state and final state are shown in Fig. 10(a) and (b).

Among these crystals, the misorientation of the material

can be clearly seen, especially near the grain boundary

joints or the triple points. This material misorientation is

a cause of geometric softening [40], and thus there

should be a higher stress concentration in these regions
(just like in the plate tension case), which is in good

agreement with Meyers and Ashworth [32]. The equiv-

alent stress–strain curves of D ¼ 1 lm and D ¼ 26 nm
cases are shown in Fig. 11, and the case of D ¼ 26 nm

shows a higher work hardening rate and a stiffer re-

sponse. Nevertheless, the difference between these two

curves is smaller than the difference calculated by Fu

et al. [35].
3.3. Model III: Continuously varying mechanical response

A different approach was implemented in the estab-

lishment of the grain-boundary effect. It provides a

continuous change in hardening as a function of posi-

tion within the polycrystalline aggregate. One of the

ways in which continuum hardening can be related to
discrete dislocation processes happening inside the ma-

terial is by tracking the change in the direction of

maximum shear stress. If this direction changes, it will

trigger cross-slip and increased hardening, as shown

schematically in Fig. 1. The angle /, corresponding to

this direction, is given by

tan 2/ ¼ ðrx � ryÞ
2sxy

; ð11Þ

where rx; ry ; sxy are the two-dimensional stresses. The

gradient of this direction is equal to

r/ ¼ o/
ox

i
!þ o/

oy
j
!
: ð12Þ

The square of the magnitude of this gradient is

r/2 ¼ o/
ox

� �2

þ o/
oy

� �2

: ð13Þ

Fig. 12 shows the distribution of this parameter

within a few grains in a polycrystal at an imposed strain.

There are two color scales on figure: the one in the left

applies to D ¼ 1 um, while the one in the right applies to
D ¼ 26 nm. The gradients are much larger for the small

grain size by virtue of the reduced length scale. The

magnitude of r/ is clearly connected to grain bound-

aries. It also varies throughout the polycrystal in a

continuous manner. The interiors of the grains are pri-

marily blue (zero value of gradient). This denotes a

constancy in the direction of maximum shear.

In order to obtain a local stress–strain relationship
from the physical processes alluded to above, one has to

assume that the material has a local yield stress and

work hardening rates that are a function of the distance

from the grain boundary. The yield stress can be ex-

pressed, as a function of distance l from the closest grain

boundary (lP b, the Burgers vector), as

s0 ¼ s00 þ ðs0 � s00Þ 1

�
� 1

l=b

�
: ð14Þ

s0 and s00, as defined in Section 3.2, are the yield stress of

the grain interior and grain boundary, respectively.

The work hardening term may be introduced

through the Seeger Stage II [48–50] work hardening



Fig. 8. Compression of polycrystalline copper (D ¼ 26 nm, Model II), left column shows equivalent strains: (a) �eP ¼ 0:0033; (b) 0.035; (c) 0.1432; (d)

0.4141; right column (e)–(h) shows the corresponding von Mises stresses, colors describe stress and strain levels.
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theory. This is not a unique approach, but it is simple

and suffices for the purpose of the work presented

herein. Seeger [48–52] assumes that most of slip in

Stage II still takes place on the primary plane. He

defines a length L which is the distance between

blocks from secondary slip activity. Seeger [49,50]

found that the barrier spacing was inversely propor-
tional to Stage II strain. This distance, L, is reduced

with strain, c, as
L ¼ K
c� c�

: ð15Þ

c� is the shear strain at the onset of Stage II hardening.
The observed value for the proportionality constant was

K � 4� 10�6 m. We modify the above expression by

incorporating the magnitude of the gradient, since the

cross-slip activity is dependent on the change in orien-

tation of the plane of maximum shear. We also eliminate



Fig. 9. Close-up (marked box in Fig. 8) showing details of plastic de-

formation for �eP ¼ 0:4141; notice shear localization.

Fig. 10. Change in crystal orientations for D ¼ 26 nm (Model II): (a)

initial orientations; (b) final crystal orientations (�eP ¼ 0:41).

Fig. 11. Equivalent stress–strain curves for D ¼ 1 lm and D ¼ 26 nm

(Model II).
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c� and assume Stage II from the onset of plastic defor-

mation.

L ¼ K0

cjr/j : ð16Þ

The parameter K0 has dimensions of rd. The increment

of strain, dc, is obtained by Seeger from an expression

analogous to the Orowan equation; a critical difference

is that the strain increment is related to an increase in

dislocation density, and not to an increase in distance

traveled by each dislocation. Seeger et al. [49] assumed
rectangular loops. For simplicity, we assume square

loops with side L. Thus

dc ¼ bL2 dN : ð17Þ
The dislocation density is LN . The athermal component

of shear stress, sG, is related to the dislocation density by
the well known expression

sG ¼ a1bG NLð Þ1=2: ð18Þ
a1 is a parameter in the Seeger derivation [49]. It is re-

lated to n, the number of dislocation piled up in front of

each barrier produced by secondary slip, by

a1 ¼ 0:2n1=2:

Seeger et al. [49] estimate that a1 ¼ 0:2. The work

hardening is obtained by taking the derivative of

Eq. (18) with respect to c:

dsG
dc

¼ a1bG
2

L
N

� �1=2
dN
dc

"
þ N

L

� �1=2
dL
dc

#
: ð19Þ

From Eq. (16) one has

dL
dc

¼ �K0

jr/j c
�2: ð20Þ

From Eq. (17) one has

dN
dc

¼ 1

bL2
: ð21Þ

Substituting Eqs. (20) and (21) into (19) eventually

leads to

dsG
dc

¼ a21G
2b

2K0sG
cjr/j þ b

2
sG

K0

cjr/j : ð22Þ

By assuming that jr/j is constant and dependent on

position only, we have the following differential equa-

tion:

dsG
dc

¼ A
c
sG þ Bcs�1

G ; ð23Þ

where

A ¼ bK0

2jr/j ; ð24Þ

B ¼ a21G
2

2K0 bjr/j: ð25Þ



Fig. 12. Distribution of magnitude of gradient of angle of maximum shear stress throughout polycrystalline aggregate. Left-hand scale: D ¼ 1 lm;

right-hand scale: D ¼ 26 nm.

Fig. 13. Computed results compared to experiments for grain sizes in nanocrystal range; notice wide range of experimental results.
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The general solution is

s2G ¼ C1Bc2

1� A
þ C2c

2A: ð26Þ

From Eq. (26), the local flow stress can be obtained as a

function of strain if the constants C1 and C2 are found.

We can add a term that takes into account the flow

stress dependence on position within the grain (Eq.

(14)). The modified equation is

sG ¼ s00 þ ðs0 � s00Þ 1

�
� 1

l=b

�
þ C1Bc2

1� A

�
þ C2c

2A

�1=2

:

ð27Þ

Eq. (27) enables the determination of the local flow
stress as a function of imposed shear strain and position

within the grain. It provides a continuous variation in

work hardening.
3.4. Additional considerations

3.4.1. Comparison with experimental results

In this study, with the phenomenological model, the

simulations were conducted for grain sizes of 26 nm

and 1 lm. This is for comparison purposes with ex-

perimental results in the grain-size range 20–54 nm

reported in the literature [53–57]. The computational
procedures and results are presented in Section 3. In

this section the computational results of Fu et al. [35]

and Model II of D ¼ 26 nm are plotted to compare

with recent experimental measurements. The experi-

mental measurements have a large variation as shown

in Fig. 13. It can be seen that for D ¼ 26 nm the

computational model by Fu et al. [35] predicts faster

work hardening as compared to Model II. Model II
reveals a slower initial work hardening rate and the

hardening process is much longer.
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At small strains Model II agrees with the Sanders

et al. curve [57], but its initial yield point is too low, and

in the middle stage it runs close to the results of Sur-

yanarayanan [54,55] (D ¼ 27 nm) and continues to work

harden. For the current work, both Model I and Model
II can successfully simulate the strengthening phenom-

ena of nanocrystalline copper, and they provide a useful

way to study the evolution of microstructure for poly-

crystalline copper. The great spread in the experimental

results is a clear demonstration that the accuracy of

calculations cannot, at the present moment, be checked

against results.

3.4.2. Shear localization

Both Models I and II exhibit shear localization. Figs.

8 and 9 show the evolution of the process: a well-de-

fined shear band is formed at �eP ¼ 0:4. This shear lo-

calization is indeed a dominant deformation mechanism

in nanocrystalline materials. Ma [59] observed locali-

zation in and nanocrystalline copper, and Wei et al. [60]

and Jia et al. [61] observed the same phenomenon in
ultrafine grained iron. The reason for this is the virtual

absence of work hardening in these materials, after a

few per cent of plastic deformation. The grain bound-

aries are the primary sources and sinks of dislocations,

and their mean free path is so small that little interac-

tion (cross slip, reactions, etc.) exists. The observations

by TEM [59–61] reveal enlarged grains within the shear

localization regions. These grains are elongated in the
shear direction and are thought to provide paths for

dislocations.

These complex changes cannot, at present, be incor-

porated into the model presented herein. Nevertheless,

the agreement between computations and experimental

observations is considered more than fortuitous. Lo-

calization takes place concurrently with hardening in the

computations. This could well represent the initiation of
the process. The material within this region is subjected

to drastic reorientation that would then lead to the

creation of favored paths for dislocation motion. The

elongated grains would provide the larger mean free

paths for these dislocations.

3.4.3. Grain-boundary sliding

The negative Hall–Petch slope obtained experimen-
tally by Chokshi et al. [58] has been at the center of

considerable debate. The picture that is emerging is that,

for grain sizes on the order of 20 nm and lower, sliding

becomes an important deformation mechanism and

lowers the yield stress. Fu et al. [35] included grain-

boundary sliding and diffusional accommodation

through a sinusoidal Raj–Ashby [62] boundary and

showed that, for d 6 10 nm, this effect was important.
Recently, Conrad and Narayan [63,64] carried out ex-

periments showing the inverse Hall–Petch relationship.

Conrad [65] developed a model that predicts the inverse
relationship. In the current calculations the smallest

grain size was 26 nm. Thus, there is no need to incor-

porate this effect (cf. Fig. 10).
4. Conclusions

Three computational models are proposed to predict

the effect of grain size and microstructural evolution,

while retaining the single crystal response within the

grain interiors:

1. Model I uses crystal plasticity in the grain interior

and a Voce equation in the grain boundaries. Elastic
anisotropy is accounted for by considering three ori-

entations with different Young moduli, calculated

from the anisotropic elastic compliances. Its mechan-

ical response is somewhat too stiff, and the isotropic

plasticity in the grain boundaries result in unrealistic

deformation.

2. Model II is a more realistic model because it uses

crystal plasticity for both the grain interiors and grain
boundaries. Elastic anisotropy is fully accounted for

by the use of the elastic stiffness matrix for copper.

Although in this study, the calculated mechanical re-

sponse does not exhibit a grain size dependence as

strong as that observed in experiments, it does pro-

vide a good simulation of the evolution of shear lo-

calization in the microstructures. This localization

occurs with global hardening. The calculations also
show more detail in the crystal slip phenomenon.

3. Model III uses a novel approach. A continuous

change in work hardening is introduced. This harden-

ing is related to the dislocation density evolution,

which is dictated by cross-slip frequency. One param-

eter that governs this evolution is the change in orien-

tation of the plane of maximum shear stress; the

magnitude of the gradient of the maximum shear
stress angle is used here. Computations using this pa-

rameter demonstrate that the grain-boundary regions

are indeed subjected to accelerated hardening.

The computational models successfully predict the

grain size effects and provide valuable information

about the deformation evolution. It is shown that the

variation among experimental results in the nanocrys-

talline range by different investigators is considerable
and therefore the fine-tuning of models cannot be car-

ried out at the current stage. The evolution of this

polycrystalline/nanocrystalline model has proceeded by

first assuming a perfectly plastic grain-boundary region

[34] to one hardening at higher rate than the grain in-

terior [35]; in the effort presented here, crystal plasticity

with texture evolution has been introduced first in a core

and mantle scheme, than in a physically based contin-
uous variation of mechanical response, see Fig. 11.

Recent observations show the formation of a grain-

boundary work hardened layer [66].
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