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5. CONCLUSIONS 
We have demonstrated that laser compression is a viable method to explore the dynamic response of metals to 

deformation and failure. The combined use of molecular dynamics and laser experiments can reveal new 
mechanisms and the limitations of old mechanisms. The homogeneous dislocation generation model [7] is 
confirmed by the molecular dynamics calculations, which also reveal that a large fraction of dislocations generated 
under compression are annihilated on release. In the compression of nanocrystalline Cu and Ni interganular shear is 
a prevalent deformation mode for grain sizes below 15 nm. Spalling experiments show that the presence of grain 
boundaries is important. Monocrystalline V has a higher spall strength than polycrystalline V. The Grady-Kipp [26-
28] predictions of fragment sizes are compared with experimental values obtained in laser compression experiments. 
The fragment sizes experimentally obtained are smaller, by a factor of three, than the predictions from Grady-Kipp. 

This research was funded by the UCOP under ILSA. We thank Dr. D. Correll for support and encouragement. 
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