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Abstract

The growth and collapse of nanoscale voids are investigated for tantalum (a model body-centered cubic metal) under different stress
states and strain rates by molecular dynamics (MD). Three principal mechanisms of deformation are identified and quantitatively eval-
uated: (i) shear loop emission and subsequent expansion from the surface of the void; (ii) cooperative shear loop emission from slip
planes that are parallel to the same h1 1 1i slip direction and their combination, forming prismatic loops; (iii) twinning starting at the
void surface. The generation and evolution of these defects are found to be functions of stress state and strain rate. Dislocations are
found to propagate preferably on {1 1 0} and {1 1 2} planes, with Burgers vectors 1/2 h1 1 1i. The dislocation shear loops generated
expand in a crystallographic manner, and in hydrostatic tension and compression generate prismatic loops that detach from the void.
In uniaxial tensile strain along [1 0 0], the extremities of the shear loops remain attached to the void surface, a requisite for void growth.
In uniaxial compressive strain, the extremities of the shear loops can also detach from the void surface. The difference in defect evolution
is explained by the equal resolved shear stress in the hydrostatic loading case, in contrast with uniaxial strain loading. Nanotwins form
preferably upon both uniaxial tensile strain and hydrostatic stress (in tension) and there is a slip-to-twinning transition as the strain rate
exceeds 108 s�1. A simplified constitutive description is presented which explains the preponderance of twinning over slip in tension
beyond a critical strain rate. The formation of both dislocations and twins is confirmed through laser compression experiments, which
provide strain rates (�108 s�1) comparable to MD. The dislocation velocities are determined by tracking the edge component of the
expanding loops and are found to be subsonic even at extremely high stress and strain rates: 680 m s�1 for 108 s�1 and 1020 m s�1

for 109 s�1.
� 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

The nucleation, growth and coalescence of voids lead to
ductile fracture of metals. One of the first to realize this
phenomenon was Tipper in 1949 [1]. A complete account
of this is given by Dodd and Bai [2]. Although a number
of continuum models for the growth of voids have been
proposed [3–6], the atomistic mechanisms are still not com-
pletely understood. There has been a common but unsub-
stantiated belief that the initiation of void formation
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takes place by vacancy diffusion in pure monocrystalline
metals. This will be discussed in Section 2. An alternative
approach, based on dislocation, is discussed first, in this
section.

The early dislocation-based models have inherent weak-
nesses. Stevens et al. [7] proposed a dislocation-based
model for growth of voids, in which the void is a sink of
dislocations. In the model proposed by Meyers and
Aimone [8], intersecting dislocations diverging from a point
were considered. A model of void growth by emission of
prismatic loops was proposed by Wolfer [9] to treat poros-
ity and plasticity in radiation-damaged materials and has
been adopted by Ahn et al. [10] to explain and model spall-
ing in aluminum. An analytical model was proposed by
rights reserved.
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Lubarda et al. [11] based on the emission of both prismatic
and shear loops, with mechanisms analogous to the Ashby
[12,13] theory for the generation of geometrically necessary
dislocations in the deformation of plastically inhomoge-
neous materials.

There has been considerable effort in the modeling of
void growth by molecular dynamics. We highlight here
the contributions most relevant to the current investiga-
tion. Simultaneously with the proposal of Lubarda et al.
[11], several molecular dynamics contributions revealed
the initiation and propagation of these loops. Seppälä
et al. [14–16] studied void growth in several papers, without
focusing on dislocation analysis. Traiviratana et al. [17,18]
observed the emission of shear loops in a face-centered
cubic metal (copper) subjected to uniaxial tensile strain.
Marian et al. [19,20] carried out quasi-continuum (QC) cal-
culations which showed the formation of shear loops in
aluminum subjected to simple shear. Dávila et al. [21] car-
ried out molecular dynamics (MD) simulations of void col-
lapse in copper subjected to shock compression, and found
that the emission of loops was responsible for the collapse
of voids. Zhu et al. [22] modeled void growth during release
of shock loading in a face-centered cubic (fcc) metal
(copper); shear dislocation loop emission from the equator
of the void under [1 0 0] loading was observed. Detailed
MD calculations by Bringa et al. [23] confirmed that shear
loop emission is the principal mechanism of void growth in
copper; the effects of void size and load orientation were
found to be significant, and one-, two- and three-dimen-
sional loop arrangements were identified and analyzed.
Subsequent to the discussion by Bulatov et al. [24] on the
impossibility of void growth by shear, Bringa et al. [25]
analyzed the previous results critically and demonstrated
that the shear loops have to stay attached to the void sur-
face to allow growth.

Void growth in polycrystalline copper, modeled by a
nanocrystalline structure, was simulated by Rudd and
Belak [26]. They observed the initiation of voids at grain
boundaries and grain-boundary triple points. Dongare
et al. [27] conducted a detailed analysis of void formation
in nanocrystalline metals with small grain size, while
behavior for a larger grain size (but still in the nanometer
range) was analyzed by Traiviratana et al. [17] and Bringa
et al. [23].

Efforts have also been made to reveal the void growth
mechanisms in body-centered cubic (bcc) metals. The con-
tribution by Rudd [28] represents the most significant effort.
He carried out a detailed analysis of void growth in V, Nb,
Mo, Ta and W; these simulations were all carried out using
Finnis–Sinclair potentials [29] and in hydrostatic tension.
Prismatic loops were observed, and a slip-to-twinning tran-
sition was also observed when the strain rate increased.
Recently, Marian et al. [30] also extended the QC calcula-
tions to void (10.9 nm diameter) collapse in a bcc metal
(tantalum) under uniaxial loading along [0 0 1] and ½�4819�
directions. Loop generation (loading in [0 0 1]) at the void
surface and twinning (loading in ½�48 19�) were observed.
Body-centered cubic metals exhibit an asymmetry (in ten-
sion vs. compression) in the flow stress, which is absent in fcc
metals. This phenomenon has been studied extensively by
Vitek and co-workers [31–34] and Seeger [35], and is attrib-
uted to dislocation core effects. Thus, the growth and col-
lapse of voids can be affected by this asymmetry.

The goal of the current investigation is to extend the
study by Bringa et al. [23] to a bcc metal and to rationalize
the recent results by Rudd [28] by developing a mechanistic
understanding of the deformation mechanisms. In order to
accomplish this goal, two parameters were systematically
varied: (i) stress state and (ii) strain rate.

2. Void initiation mechanisms

The void initiation process in pure monocrystals has
often been assumed to be governed by the diffusion of
vacancies towards a central point, creating and nourishing
a void. Thus, one can envisage the convergent flow of
vacancies to a specific point, forming a void. One of the
most rapid diffusion mechanisms is “pipe” diffusion, in
which vacancies migrate along dislocation lines. Indeed,
this was suggested by Cuitiño and Ortiz [36] based on an
enhanced vacancy concentration created by plastic defor-
mation principally through multiple glide and dislocation
intersection. The vacancy concentration generated by plas-
tic deformation has been proposed by Seitz [37] and Mott
[38–40] to vary linearly with strain e (a term accounting
for the equilibrium concentration has been added here):

c0 � 10�4eþ ceq ¼ 10�4eþ exp
�Q
kBT

� �
ð1Þ

where ceq is the equilibrium vacancy concentration, Q is the
activation energy for the formation of a vacancy, kB is the
Boltzmann constant and T is the temperature. Although
there are alternative expressions, this will suffice for the
present calculation. Cuitiño and Ortiz [36] developed a spe-
cific mechanism for this mode of vacancy diffusion, with
the following equation predicting the time change of void
radius, R, in terms of the pipe diffusion coefficient, D,

dR
dt
¼ 1

R
Dðc0 � csÞ ð2Þ

cs ¼ ceq exp
2cV v

RkBT

� �
¼ exp

2cV v=R� Q
kBT

� �
ð3Þ

where c0 is the void concentration due to plastic deforma-
tion, cs is the vacancy concentration at the surface of the
void, c is the surface energy, and Vv is the atomic volume.

If one assumes that void initiation takes place at e = 1, it
is safe to assume c0� cs. One obtains, from Eq. (1) (e = 1,
Q = 4.48 � 10�19 J from experimental data for tantalum
[41], T = 300 K), c0 � 10�4.

From Eq. (3) one obtains cs, the vacancy concentration
at the surface of the void (c = 2.68 J m�2 from experimen-
tal data for tantalum [42], Vv = 4p/3 � (0.143 nm)3,
R = 2 � 0.143 nm, T = 300 K): cs � 1.0 � 10�23.
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Fig. 2. Tensile ductility (true strain in the neck at fracture) ef as a function
of volume fraction f, for various second-phase particles copper alloys
(adapted from Edelson and Baldwin [48]).
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Integrating Eq. (2) yields:

R
R0

¼ 1þ 2Dc0

R2
0

t
� �1=2

ð4Þ

where t is the time in seconds. The initial void radius, R0,
was taken as the atomic radius for tantalum, 0.143 nm. Val-
ues of diffusion coefficient D at different temperatures are
taken from experimental data for tantalum [43]. The nor-
malized void radius R/R0 vs. time at three different temper-
atures is shown in Fig. 1. Conventional plastic deformation
at a conservative strain rate 10�2 s�1 will lead to a failure
time of 102 s assuming a strain of 1. Failure is typically char-
acterized by voids with radii ranging in the micrometers
(R/R0 � 104); this is the typical dimple size in fracture sur-
faces. The times predicted by Eq. (4) at 1260 K are longer
by many orders of magnitude (>1010 s). Even at nearly
2000 K, voids will require 105 s to grow to a radius of
0.1 lm. Thus, vacancy diffusion, which is the principal
mechanism of void growth in creep fracture, as treated by
Raj and Ashby [44], cannot be the operating mechanism
in conventional plastic deformation of tantalum. This
mechanism was also discounted for copper deformed at
conventional strain rates at ambient temperature [18].

Most engineering alloys are polycrystalline and contain
second-phase particles. It is well known that inclusions
serve as initiation sites for voids either by separation of
the interface or by their fracture during plastic deformation
[45–47], forming an initial void of size equivalent to the
particle. The presence of second phases has a profound
effect on the total elongation, as expressed by Fig. 2, based
on measurements on a number of copper-based alloys with
dispersions of different sizes and fractions [48]. The fracture
strain increases exponentially as purity is increased. In the
extreme case when no nucleation sites (other than vacan-
cies) are present, the fracture strain tends to infinity and
the fracture mode has been called “rupture” by Chin
et al. [49] and “knife-edge” by others [50]. Broek [51] pre-
sents a schematic showing how the sequential activation
Fig. 1. Increase in normalized radius R/R0 of void for tantalum by
vacancy diffusion as a function of time.
of two slip planes leads to a sharp fracture in which the
cross-sectional area is reduced to nearly zero.

The ubiquitous observation of voids nucleating at sec-
ond-phase particles and the difficulty of associated with
homogeneous nucleation have led to a consensus that, in
pure monocrystals, fracture does not involve the nucle-
ation, growth and coalescence of voids. Two important fac-
tors counter this argument:

(a) In shock compression experiments, the reflected tensile
pulse is known to create spalling by the nucleation–
growth–coalescence sequence even in high-purity
monocrystals [52]. The unique stress state (uniaxial
strain) created by the reflected pulse does not allow
the tensile instability and therefore spalling is initiated
internally. Concurrent with this, the stress required for
spalling in monocrystals is higher than in polycrystals
and in metals containing second-phase particles.

(b) The results by Rosi and Abrahams [53] on [1 0 0] Cu,
Ag and Cu–0.1% Al single crystals pulled in tension
and characterized under the fracture regions revealed
voids in their proximity. The fracture was either
knife-edge or V-shaped, and the reduction in area
was nearly 100%. Fig. 3 shows a schematic of speci-
men as well as the micrographs showing voids. It is
clear that voids formed in the vicinity of the fracture,
although it is of the “knife-edge” or “rupture” type.
The voids are indicated by arrows.

These results are indeed significant and indicate the pos-
sibility of voids nucleating and growing in pure monocrys-
tals by dislocation-based mechanisms. The molecular
dynamics component of this investigation will model this
phenomenon for tantalum.

3. Computational methods

The molecular dynamics LAMMPS (large-scale atomic/
molecular massively parallel simulator) [54] code was used



Fig. 3. Appearance of voids in section near and parallel to the fracture surface in: (a) Cu; (b) Ag single crystal (adapted from Rosi and Abrahams [53], fig.
2a and b).
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in this investigation. For the bcc tantalum structure, the
extended Finnis–Sinclair potential by Dai et al. [55] was
used. Unlike the Finnis–Sinclair potential [29,56], which
shows artificial behavior at high pressure (see Fig. 1e in
Ref. [55]), this potential can still give the correct volume–
pressure relation at pressures up to 500 GPa [57]. The num-
ber of atoms was 2 � 106. Calculations were performed on
parallel PCs and on the TeraGrid supercomputer.

The single crystal tantalum domain was a cube with a
spherical void at the center. The void radius R is 3.3 nm.
Box size was 100 � 100 � 100 unit cells. Periodic bound-
aries were applied in all directions. The different domains
were subjected to a uniform stress state by re-scaling of
the atomic coordinates. These states included uniaxial ten-
sile and compressive strain along [1 0 0], and triaxial
(hydrostatic) tensile and compressive strain along [1 0 0],
[0 1 0] and [0 0 1]. All simulations were done at an initial
temperature of 300 K. The strain rate varied from 108 to
109 s�1. All samples were equilibrated to reach zero pressure
and the desired initial temperature. Loading was carried out
without any temperature control, to capture temperature
effects related to plasticity. Visualization of stacking faults,
partial and full dislocations, twin boundaries and free sur-
faces was conducted in visual molecular dynamics [58] with
a filter using common neighbor analysis [59]. Filtering with
the centro-symmetry parameter (CSP) [60] resulted in simi-
lar results when the second neighbor shell was used in the
CSP calculation, following the suggestion by Rudd [28].

The generalized stacking fault energies for {1 1 0},
{1 1 2} and {1 2 3} slip planes were calculated using molec-
ular statics, using conjugate gradient in LAMMPS. For
each slip plane, periodic boundaries were applied in direc-
tions parallel to the slip plane of a 24 nm cubic crystal, and
only relaxations along the slip direction of the generalized
fault were not allowed; hence the crystal was free to move
along the two directions perpendicular to the slip direction
of the fault.

4. Results and discussion

This section is divided into eight parts. First, the differ-
ent parameters (stress state and strain rate) investigated are
briefly presented, with an overview of the simulations car-
ried out. Sections 4.2–4.4 discuss the three principal defor-
mation mechanisms indentified, respectively:

(a) Shear loop emission and subsequent expansion from
the surface of the void.

(b) Cooperative shear loop emission from slip planes that
parallel to the same h111i slip direction and their
combination, forming triangular or hexagonal pris-
matic loops.

(c) Twinning starting at the void surface.

Section 4.5 analyzes the effects of the imposed parame-
ters (stress state and strain rate) on the slip-to-twinning
transition in terms of constitutive models. In Section 4.6
defects observed in tantalum under deformation conditions
approaching, as much as possible, the MD stresses and
strain rates are presented. Section 4.7 presents detailed
analyses of stacking fault energies for {1 1 0}, {1 1 2} and
{1 2 3} slip planes. The dislocation velocities and stresses
for dislocation emission are analyzed in Section 4.8.

4.1. Simulation parameters and defect generation and

evolution

Conditions under which simulations were performed are
hydrostatic stress (tension and compression) and uniaxial
strain (tensile and compressive) at both 108 and 109 s�1.
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Two distinct deformation mechanisms were clearly identi-
fied: slip and twinning. These deformation mechanisms in
void growth and collapse are summarized in Table 1. Twin-
ning only occurs in tension (both hydrostatic tension and
uniaxial tensile strain) at the strain rate of 109 s�1 while shear
loop emission occurs in all other cases. The shear loops form
on {1 1 2} (in tension) and {110} planes (in compression)
with Burgers vectors 1/2 h1 1 1i, as experimentally observed
for bcc metals when deformation occurs at low strain rate.
The twinning planes are {1 1 2} planes. As these shear loops
expand, shear loops emitted from slip planes that are parallel
to the same h1 1 1i slip direction can combine and form pris-
matic loops in some cases (hydrostatic tension and compres-
sion). This will be discussed in detail in Sections 4.2–4.4.

We will first present the details of shear loop nucleation.
This is shown for a 3.3 nm radius void in hydrostatic ten-
sion at strain rate of 108 s�1 in Fig. 4. Fig. 4a shows the
cross-section of the void, and Fig. 4b shows the void sur-
face, that is initially faceted. Fig. 4c shows two {1 1 0}
stacking faults, ð�110Þ and ð�10�1Þ, nucleating at the void
surface and intersecting it at 45�, the angle at which the
shear stresses are maximum. The traces of these two
{1 1 0} slip planes are schematically shown in Fig. 4d. After
the nucleation of these two {1 1 0} faults, subsequent slip
occurs equally and alternatively in these two {1 1 0} planes,
forming a {1 1 2} fault, since:

ð�110Þ þ ð�10�1Þ ¼ ð�21�1Þ
Thus, the microscopic ð�21�1Þ plane is composed, at the
atomic level, of ð�110Þ and ð�1 0�1Þ steps. One can also form
other configurations, such as two ð�110Þ segments plus one
ð�10�1Þ segment forming a ð�3 2�1Þ plane, since:

2ð�110Þ þ ð�10�1Þ ¼ ð�32�1Þ
At the same time, the leading and trailing partials of

these {1 1 0} faults always react, leaving a “hole” in the
center of this {1 1 2} fault; thus a shear loop lying on
{1 1 2} plane is generated, as shown in Fig. 4e and f.

All these planes have a common intersection: ½11�1�. This
is the classic “pencil glide” configuration for slip in bcc met-
als. The edge components of the dislocation loops advance
and move away from the void, while the screw components,
being less mobile, stay back as straight segments. The edge
component of the dislocation often acquires curvature, out-
side of the ð�21�1Þ plane (as shown in Fig. 4e), because dislo-
cation segments can reside in any of the (�110, (�10�1), ð�21�1Þ
or ð�32�1Þ planes. This will be shown later.

4.2. Emission of shear loops

Fig. 5 shows the sequence of defect evolution in uniaxial
compressive loading at a strain rate of 108 s�1. Emission of
a non-planar shear loop lying on {110} planes is shown in
Fig. 5a. As the stress increases, loops are formed on several
planes. The edge components of the formed shear loops,
with Burgers vector b = 1/2 h1 1 1i, move along h1 1 1i
direction while the screw components expand much less



Fig. 4. Dislocation loop nucleation in hydrostatic tension at strain rate of 108 s�1 (R = 3.3 nm). (a) Cross-section of a sample with a void at the center. (b)
Initial faceted void surface. (c) Nucleation of a {1 1 2} shear loop by two {1 1 0} stacking faults intersecting the void surface at 45�. (d) Schematic showing
the traces of two {1 1 0} slip planes intersecting a void at 45� to its surface. (e) Well-formed shear loop comprising two {1 1 0} components. The color scale
here and in subsequent similar figures indicates radial distance from the center of the void, with the void surface in red and atoms farther away in blue. For
defect visualization, only non-bcc atoms are shown. (f) Schematic showing a {1 1 2} plane and a {1 2 3} plane formed by two {1 1 0} planes (non-planar).
In uniaxial tension, there is also only one shear loop along each h1 1 1i direction, lying on formed by two {1 1 0} planes. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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due to their lower mobility. They align along h1 1 1i direc-
tions in the {1 1 0} planes. Along each h1 1 1i direction
there is only one shear loop lying on two {1 1 0} planes
(non-planar). In uniaxial tension, there is also only one
shear loop along each h111i direction, lying on a {1 1 2}
plane. This is consistent with a Schmid factor analysis.
The three slip planes sharing the common direction
[1 1 1] are ð1�21Þ, ð11�2Þ, and (�211). The Schmid factors
are:

ð1�21Þ½111� : m ¼ 0:235
ð11�2Þ½1 11� : m ¼ 0:235

ð�211Þ½1 11� : m ¼ 0:471

Thus, the (�211) [1 1 1] system is activated first. This is
shown schematically in the sequence shown in Fig. 6, where
the three planes sharing the same [1 1 1] direction are
shown, and a dislocation loop forming in the (�211) plane
is also shown. It should be noted that the extremities of
these dislocation loops have to remain attached to the void
surface for matter transport to occur. This important
aspect has been discussed by Bulatov et al. [24] and Bringa



Fig. 5. Sequence of shear-loop formation in uniaxial compressive strain at a strain rate of 108 s�1 (R = 3.3 nm). These are referred to as “dislocation
loops” by Marian et al. [30] in his static QC simulations.

Fig. 6. Schematic showing formation of a shear loop in uniaxial tensile strain.
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et al. [25]. In this sense, the dislocation loops are different
from conventional shear loops. If one considers the
tridimensional aspects, one has more than one slip system
with the highest Schmid factor. This is clear from the
simulation in Fig. 5 and from Fig. 7, which shows four slip
planes of the {1 1 2} family, each contributing one loop.



Fig. 7. Schematic showing formation of shear loops on four {1 1 2} planes with expansion of the void under uniaxial tensile strain.

Y. Tang et al. / Acta Materialia 59 (2011) 1354–1372 1361
The cooperative expansion of the loops produces the
growth of the void.

Nucleation of shear loops under hydrostatic tensile and
compressive strain is similar to that under uniaxial tensile
and compressive strain. Sequence of defect evolution in
hydrostatic tensile strain at a strain rate of 108 s�1 is shown
in Fig. 8. One important difference is that loops are simul-
taneously generated on a greater number of slip systems, by
virtue of the fact that the Schmid factors for all systems are
identical. This can be seen by comparing Figs. 5a and 8a.
In hydrostatic tension, along each h1 1 1i direction there
are three shear loops lying on the three {1 1 2} planes par-
allel to the same h1 1 1i direction.

4.3. Formation of prismatic loops

In hydrostatic tension, due to the spherical symmetry of
stress field, all 12 of the {1 1 2} slip planes have the same
resolved shear stress. As a consequence, along each
h1 1 1i slip direction, there are three shear loops lying on
the three {1 1 2} slip planes that are parallel to the same
h1 1 1i direction. Fig. 9 shows the evolution of defects in
this configuration. The total possible number of shear
loops is 24, although some of them develop at a slower
rate. As the shear loops expand in {1 1 2} planes, three
loops lying in the three {1 1 2} planes that parallel to the
same h1 1 1i direction can meet and react. The screw com-
ponents of these three loops have the same Burgers vector
b = 1/2 h1 1 1i but the dislocation line directions are oppo-
site, so they cancel each other, only leaving the edge com-
ponents. These detached edge dislocations are connected
with each other and form a triangular dislocation loop,
namely a prismatic loop, as shown in Fig. 9c and d. After
the cancellation of screw dislocations, new shear loops are
generated from the void surface, as shown in Fig. 9d, and
the prismatic loop emission starts again. This prismatic
loop formation by three shear loops interacting is schemat-
ically shown in Fig. 10. In Fig. 10b, three loops are emitted,
on ð1�21Þ, ð�211Þ and ð11�2Þ, which have a common inter-
section [1 1 1]. The screw components of the shear loops
cancel each other (b1

!
+ (�b3

!
); b3
!

+ (�b2
!

); b2
!

+ (�b1
!

)),
and the edge components form a triangular loop. As the
triangular loop moves outward, the volume of the void is
enlarged by the displacement between lattices inside and
outside the triangular prism, as shown in Fig. 10d.

In hydrostatic compression, the situation is similar but
the shape of the prismatic loops generated is hexagonal,
not triangular. This is shown in Fig. 11. After the nucleation
of two {1 1 0} faults intersecting the void surface at 45�, sub-
sequent slip occurs still in the same {1 1 0} planes, not alter-
nately in two {1 1 0} planes, as shown in Fig. 12a. This will
not form a {1 1 2} fault. After the dislocation reaction, non-
planar shear loops lying on two {1 1 0} planes are formed.
Also, along each h1 1 1i direction there are three non-planar
shear loops lying on {1 1 0} planes parallel to the same
h1 1 1i direction. Some of these loops are of smaller size.
As slip occurs in {1 1 0} planes, these shear loops lying on
{1 1 0} planes that parallel to the same h1 1 1i direction meet
and react. Hexagonal prismatic loops are formed, as shown
in Figs. 11d and 12b. This behavior was never seen in the MD
simulations of Bringa et al. for fcc copper [23], because the
formation of extended stacking faults and shear loop reac-
tions did not allow for the formation of prismatic loops.
However, a mechanism akin to the one presented by Bulatov
et al. [24] and predicting rectangular loops is feasible.

4.4. Twinning

At the higher strain rate of 109 s�1 (in hydrostatic ten-
sion and under uniaxial tensile strain), two {1 1 0} stacking
faults intersecting the void surface at 45� nucleate initially
at the void surface. However, after their generation, twins



Fig. 8. Propagation of multiple shear loops in hydrostatic tensile loading at a strain rate of 108 s�1 (R = 3.3 nm).
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are formed on the {1 1 2} planes (these are the twinning
planes in bcc lattice), representing the combination of these
two {1 1 0} planes, as discussed in Section 4.1. Their
expansion in uniaxial tension is shown in the MD sequence
of Fig. 13. As the stress increases, these twin boundaries
spread outwards in the {1 1 2} planes; atoms on those
{1 1 2} planes adjacent to the formed {1 1 2} twin bound-
aries will glide along h1 1 1i directions sequentially, thick-
ening these twins. As the twins grow, the volume of the
void is enlarged by the cooperative shear displacement.
Along each h1 1 1i slip direction, there is at most one twin
lying on a {1 1 2} plane parallel to the h1 1 1i direction.
Twinning in uniaxial tensile strain is schematically shown
in Fig. 14. Only one twin is activated, in the system having
the highest Schmid factor.

In hydrostatic tensile stress, due to the spherical symme-
try of stress field, along each h1 1 1i slip direction, three
twins lying on the three {1 1 2} planes parallel to the same
h1 1 1i direction are formed. The MD simulation sequence
is shown in Fig. 15, while Fig. 16 shows the schematic
evolution of three twin planes being simultaneously
activated.

Interestingly, twins were only observed when the stress
was tensile (uniaxial strain or hydrostatic stress). Sec-
tion 4.5 provides a rationale for this stress dependence.
Using the QC method, Marian et al. [30] observed twinning
for uniaxial compression, but only when they maximized
the twinning shear (loading along ½�48 19�), identified the
observed defects as twins on (1 1 0) planes. We observed
similar features as the ones observed by Marian et al. [30]
for strain rates of 1010 s�1 (Fig. 17). However, in our case,
these features can be identified as partial dislocations on
{1 1 0} planes with a Burgers vector along [1 1 1]. Twinning
in our simulations might be related to the twinning process
observed by Marian et al. [61].

4.5. Constitutive description of the slip-to-twinning transition

To estimate the slip-to-twinning transition at high strain
rate and under shock compression, Meyers et al. [62]



Fig. 9. Sequence showing formation of shear loops and triangular prismatic loops in hydrostatic tensile loading at a strain rate of 108 s�1 (R = 3.3 nm).
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developed an analysis that has been successfully applied to
copper [63] and nickel [64]. It is based on the simple pre-
mise that slip and twinning are competing mechanisms,
and that the one requiring the lowest applied shear stress
operates. Here this analysis is extended to a bcc metal,
tantalum. The yield stress induced by slip can be expressed
by the Zerilli–Armstrong equation [65] for bcc metals:

rS ¼ athermal stressþ C2e�C3T _eC4T

¼ r�S þ C2e�C3T _eC4T þ kSd�1=2 ð5Þ

where C2, C3, C4 and ks are parameters for tantalum, r�S is
the athermal stress (not including the grain-size effect), _e is
the strain rate, T is the temperature and d is the grain size.
The values of these parameters C2, C3 and C4 have been
established by Zerilli and Armstrong [66] for polycrystal-
line tantalum based on experimental results by Hoge and
Mukherjee [67] at low strain rates. The following values
were used [66]: C2 = 1125 MPa, C3 = 0.00535 K�1,
C4 = 0.00024 K�1. The value of C4 was changed from its
original value of 0.000327 K�1 to 0.00024 K�1 to fit the
results of Rittel et al. [68] at both low and high strain rates
(solid circles and dash line in Fig. 18), and details are given
in a separate paper discussing experimental results [69].
Sherwood et al. [70] observed slip and twinning in both ten-
sion and compression of [1 0 0] monocrystals, therefore
their experimental results are used in this analysis. The va-
lue of r�S þ kSd�1=2 for slip was obtained by translating the
experimental values by Rittel et al. [68] down to accommo-
date the results of experimental yield stress for monocrys-
talline tantalum along [1 0 0] by Sherwood et al. [70]
(solid triangle in Fig. 18): r�S þ kSd�1=2 ¼ �26:4 MPa. It
should be noted that the yield stresses in tension and com-
pression are almost the same at room temperature [70].
Thus, the asymmetry of yield stress due to dislocation core
effects [31–35,71], which is significant at lower tempera-
tures, is non-existent at 300 K for tantalum. In contrast,
there is a significant difference for tungsten and molybde-
num [71] at 300 K.

The effect of strain rate on twinning can be neglected, to
a first approximation. We are also neglecting the effect of
temperature on twinning, since the temperature rise due



Fig. 10. Emission of shear loops leading to prismatic loop formation in hydrostatic tension. (a and b) Shear loop emission on three {112} planes (ð1�21Þ,
ð�211Þ and ð11�2Þ) which share a common direction [1 1 1]; (c and d) formation of a triangular prismatic loops.

1364 Y. Tang et al. / Acta Materialia 59 (2011) 1354–1372
to plastic activity in our simulations was relatively small.
The twinning stresses established by Sherwood et al. [70]
in tension and compression for loading along [1 0 0] were
378 and 771 MPa, respectively. Thus, the twinning stress
in tension is half of the one in compression. The slip-to-
twinning transition strain rates in tension and compression
can be predicted, as shown in Fig. 18. The predicted tran-
sition strain rates in compression (1 � 107 s�1) is in qualita-
tive agreement with experimental values [69], although the
predicted transition strain rate in tension (4 � 102 s�1) is
much lower than the simulation result (108–109 s�1). Con-
sidering the many simplifications in the current analysis,
the results are in qualitative agreement with the analysis
above. The values for the twinning threshold used above
correspond to experimental values for macroscopic Ta
crystals, which are likely to have abundant dislocation
sources. On the other hand, our calculations use single
crystals with approximate size 33 nm that are devoid of dis-
locations or other defects except for the initial void. Thus,
their strength level is much higher than the experimentally
observed values. This is a well-known effect at the nano-
scale, where single crystals and even polycrystals show
tremendous strength for both fcc and bcc materials [72].

4.6. Experimentally observed defects

Although the MD simulations did not produce twinning
under compression of the voids, it can occur experimentally
if sufficiently high shear stresses are reached, as demon-
strated by shock compression experiments on Ta crystals



Fig. 11. Sequence of shear loop emission leading to hexagonal prismatic loops formation and detachment in hydrostatic compression at a strain rate of
108 s�1 (R = 3.3 nm).

Fig. 12. Screw components of shear loops gliding in {1 1 0} planes in hydrostatic compression at 108 s�1 (R = 3.3 nm). The inset in (b) shows hexagonal
loops formed by shear loops.
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in gas guns [65,73] and lasers [69] in which stresses as high
as 100 GPa can be reached.

Experiments conducted using laser energy to generate
shock pulses [69] confirm the slip-to-twinning transition
in compression when the pressure exceeds �35 GPa. These
laser compression experiments were carried out using high-
energy Nd-glass pulsed laser beams with a face plate and
generated strain rates on the order of 108–109 s�1 for times
on the order of nanoseconds. This extreme regime is the
closest possible to MD simulations, in which strain rates



Fig. 13. Sequence of defect evolution (formation of {1 1 2} twins) in uniaxial tensile strain at a strain rate of 109 s�1 (R = 3.3 nm).

Fig. 14. Schematic showing twinning in uniaxial tensile strain at strain rate of 109 s�1; only one plane is activated.

1366 Y. Tang et al. / Acta Materialia 59 (2011) 1354–1372



Fig. 15. Sequence of defect evolution (twins, and also some dislocation loops) in hydrostatic tensile loading at a strain rate of 109 s�1 (R = 3.3 nm).

Fig. 16. Schematic showing twinning under hydrostatic tensile loading; three planes are simultaneously activated.
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Fig. 17. Sequence of defect evolution under uniaxial compressive strain along [1 0 0] at a strain rate of 1010 s�1 (R = 2 nm). Planar defects are lying on
two {1 1 0} planes with zero Schmid factor, namely (0 1 1) and ð01�1Þ, forming a rectangle surrounding the void.
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Fig. 18. Slip/twinning stress as a function of strain rate. Slip-to-twinning
transition occurs at the intersection of slip stress and twinning stress.
Twinning stress is fitted to experimental values and is therefore signifi-
cantly lower than values resulting from atomistic simulations.
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usually vary from 107 to 1010 s�1 and loading times are on
the order of picoseconds.
The characteristic deformation structures observed in a
[1 0 0] Ta monocrystal loaded in uniaxial strain are illus-
trated in Fig. 19. Fig. 19a shows dislocations generated at
a compressive stress of �20 GPa; this is a comparable value
to the stress in Fig. 5, which is �15 GPa, also in uniaxial
compressive strain. In the actual shock compression exper-
iments the dislocations are not nucleated at voids but are
the result of the existing (pre-shock) dislocation structure.
Fig. 19b shows twinning in the same [1 0 0] monocrystal
shock compressed to a stress higher than 35 GPa. The twins
form on {1 1 2} planes and have thicknesses of �0.2 lm.
These twins have dimensions much higher than the ones
in the current MD simulations because of the differences
in the two regimes, including sample size (3 mm vs. 33 nm),
loading time (3 � 10 ns in laser shock compression vs.
�10 ps in MD) and stress level. These observations illustrate
the nature of the deformation processes.

4.7. Analysis of generalized stacking fault energies

The generalized stacking fault energies c (f) for {1 1 0},
{1 1 2} and {1 2 3} slip planes gliding along h1 1 1i



Fig. 19. TEM micrographs of (a) dislocations and (b) mechanical
twinning in laser shocked [1 0 0] Ta monocrystal at a strain rate of
109 s�1, energy level of 684 J, pulse duration of �10 ns and input energy of
�600 J mm�2.

Fig. 20. Generalized stacking fault energies c (f) for slip along h1 1 1i
directions in {1 1 0}, {1 1 2} and {1 2 3} slip planes. f is the displacement
vector, f = |f|, b = |1/2 h111i|. Relevant displacements are noted. Values of
the maximum generalized stacking fault energies calculated by others
[74–76] are also included.
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directions are shown in Fig. 20, where f is the displacement
vector, f is the magnitude of f and the magnitude of the
Burgers vector b is b = |1/2 h1 1 1i|. Generalized stacking
fault energies for slip planes gliding along other directions
were not calculated because the principal slip directions in
bcc lattice are h111i. Values of the maximum generalized
stacking fault energies calculated by others [74–76] using
different methods, such as the first-principles-based force
fields method (qEAM) [74], the angular-dependent
potential (ADP) [75], ab initio calculations [75] and the
model generalized pseudopotential theory (MGPT) [76],
are also included in Fig. 20 for comparison. The fact that
the current results agree well with different simulations
validates the use of this extended Finnis–Sinclair potential
for plasticity studies.

All stacking faults in {1 1 0}, {1 1 2} and {1 2 3} slip
planes with the fault vector in h1 1 1i directions are unsta-
ble (there is no minimum energy point), as shown in
Fig. 20. This is different from stacking faults in fcc lattice
[77]. The curve of c (f) � f for {1 1 0} planes is symmetric
with respect to f = b/2, which means that gliding along
the opposite direction ½�1�1�1� is equivalent to gliding along
[1 1 1]. On the other hand, curves for {1 1 2} and {1 2 3}
planes are asymmetric. For {1 1 2} planes the energy curve
is smoother when gliding in the [1 1 1] direction than in the
opposite direction; this is well known as twinning and anti-
twinning asymmetry [31], although the amount of asymme-
try is small, as observed in ab initio calculations [75]. It is
also worth noting that, among these three slip planes,
{1 1 0} planes have the lowest stacking fault energies for
all values of f, which accounts for the nucleation of stack-
ing faults in {1 1 0} planes, as shown in Fig. 4c. Energies
for {1 1 2} and {1 2 3} plane faults have almost the same
values except for the region near the maximum point, but
are higher than energies for {1 1 0} fault. For each of the
{1 1 0}, {1 1 2} and {1 2 3} plane faults, the energy for
f = b/3 is higher than twice of that for f = b/6, namely c
(b/3) > 2c(b/6), which means that an f = b/6 fault is prefer-
able to an f = b/3 fault. Calculations for samples initially at
finite stress and temperature might also contribute to the
understanding of defect generation under extreme
conditions.

4.8. Analysis of stress–strain response and dislocation

velocity

The stress–strain curves of samples with 3.3 nm voids in
uniaxial strain and hydrostatic stress are shown in Fig. 21a
and b, respectively. In Fig. 21, the strains at which defects
start to nucleate are indicated by arrows. In all cases, the
yield stresses increase with the increasing strain rate. In
uniaxial tensile strain and hydrostatic tension, the stress–
strain curves drop precipitously, due to the stress release
by the expanding void, while there are no obvious stress
drops in the stress–strain curves in uniaxial compres-
sive strain and hydrostatic compression. These stress
levels are, as commented earlier, much higher than the
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experimental values used in Section 4.5 and this is one of
the reason for the differences observed.

Dislocation velocities can also be obtained in our MD
simulations, in a manner similar to that shown for fcc crys-
tals by Dávila et al. [21] and Bringa et al. [23]. For copper,
they obtained both subsonic and transonic dislocations,
depending on the applied stress level. The transonic dislo-
cations are from molecular dynamics simulations by Dávila
et al. [21] of copper under shock compression; this suggests
the existence of partial dislocation loops expanding at
velocities exceeding the shear wave speed. At the higher
stresses (21 GPa) the velocity of the partial loops
(4.4 km s�1) was higher that the bulk sound velocity
(4 km s�1). In our simulations, dislocation velocities in uni-
axial compressive strain for tantalum are also calculated by
tracking the dislocation front as a function of time, as
shown in Fig. 22. Dislocation velocities in uniaxial com-
pressive strain at strain rates of 108 and 109 s�1 are 680
and 1020 m s�1 respectively, which are subsonic. The stress
levels corresponding to the dislocation motion in uniaxial
compressive strain can be obtained from Fig. 21a, and
are about 13.5–14.0 and 17.3–19.8 GPa at the strain rates
of 108 and 109 s�1, respectively.
A dislocation velocity vs. stress relation for tantalum
was also calculated by Deo et al. [78] using a stochastic
method. Their applied stress rA was normalized by the Pei-
erls stress sp. For comparison we also normalized the
applied stress by the Peierls stress. Since there is no avail-
able Peierls stress sp calculated using the extended Fin-
nis–Sinclair potential, we use instead the relation
sp = 0.043 C44 calculated using the Finnis–Sinclair poten-
tial [29] by Gröger and Vitek [34]. The shear modulus
C44 is 87.4 GPa using the extended Finnis–Sinclair poten-
tial [55], and thus sp = 3.76 GPa. The calculated disloca-
tion velocities vD as a function of normalized stresses rA/
sp are shown in Fig. 23. Deo et al.’s [78] results (only for
T = 300 K) are also included in Fig. 23. It can be seen from
Fig. 23 that there is a good agreement between our results
and the linear extrapolation of Deo et al.’s [78] results. We
note, however, that dislocation mobility in bcc metals is
extremely complex, as shown by Jin et al. [79] and Marian



Y. Tang et al. / Acta Materialia 59 (2011) 1354–1372 1371
et al. [61]. For instance, Marian et al. [61] found that at
high strain rates screw dislocation motion in Fe leads to
the production of defect debris and eventually to twinning.
The points presented here are in the same regime that Mar-
ian et al. [61] saw roughening during screw dislocation
motion; however, edge dislocations would behave differ-
ently. We should point out that Gumbsch and Gao [80]
have reported supersonic dislocations in tungsten (also
bcc) from simulation.

5. Conclusions

1. Three deformation mechanisms in void growth and col-
lapse are identified and evaluated: (i) shear loop emis-
sion and subsequent expansion from the surface of the
void; (ii) cooperative shear loop emission from slip
planes which are parallel to the same h1 1 1i slip direc-
tion, and their combination forming prismatic loops;
and (iii) twinning starting at the void surface. The
shapes of the formed prismatic loops are different in
hydrostatic tension and compression, triangular in ten-
sion and hexagonal in compression.

2. The effects of stress states on deformation mechanisms
are discussed: the number of activated slip systems is
determined by the stress state. In hydrostatic stress,
there are 24 activated slip systems, three along each
h1 1 1i slip direction, which allows for the formation
of prismatic loops. For uniaxial strain along [1 0 0],
there are only eight activated slip systems, only one
along each h1 1 1i slip direction, and prismatic loops
are not able to be formed; the slip planes of screw com-
ponents of formed shear loops are determined by the
directions of loading (tension/compression asymmetry).
In tension, screw components prefer to glide in {1 1 2}
planes, since these {1 1 2} planes are twinning planes.
In compression, screw components prefer to glide in
{1 1 0} planes, since now {1 1 2} planes are anti-twin-
ning planes.

3. Effects of strain rate on deformation mechanisms are
discussed: there is an obvious slip-to-twinning transition
in tension (hydrostatic tension and uniaxial tensile
strain) when the strain rate increases from 108 to
109 s�1. This transition appears because 1/2 h1 1 1i
screw dislocations prefer to generate {1 1 2} twins than
glide at high strain rate; there is no significant strain-rate
effect in compression (hydrostatic compression and uni-
axial compressive strain), because screw dislocations
prefer to glide in {1 1 0} planes in compression and this
glide seems not to be sensitive to strain rates up to
109 s�1. This slip-to-twinning transition is also observed
in independent laser compression experiments and
occurs at a pressure of approximately 35 GPa.

4. Analysis of the MD simulations predicts a slip-to-twin-
ning transition strain rate in qualitative agreement with
experiments and with a transition model fit to experi-
mental results, but at a much higher strain rate. It
should be emphasized that there are large differences
between the experimentally obtained and computed
twinning and slip stresses. The MD simulations apply
to a single crystal with small dimensions (nanometers)
that is devoid of pre-existing dislocations or other
defects, except for the void. In contrast, the monocrys-
tals tested experimentally have lateral dimensions of mil-
limeters and contain defects. Nevertheless, a trend can
be extracted from the results: the transition (from slip-
to-twinning) strain rate in tension is much lower than
in compression. This explains the formation of twins
in tension and their absence in compression.

5. Laser compression experiments on tantalum monocrys-
tals with the same [1 0 0] orientation produce dislocation
networks at compressive stresses below 35 GPa and
twins at stresses higher than this threshold. It is impor-
tant to point out that twinning was observed in com-
pression because in the shock loading experiments
[65,69,73] stresses considerably higher than the MD
stresses (�15 GPa) were reached.

6. Dislocation velocities are measured by tracking the far
side of the edge components of the dislocation loop
and are found to be �680 and �1020 m s�1 for imposed
strain rates of 108 and 109 s�1 in uniaxial compressive
strain, respectively. Our results are in good agreement
with calculations by Deo et al. [78].

Acknowledgements

This research was funded by the University of California
Research Laboratory Program and was supported in part
by the National Science Foundation through TeraGrid re-
sources provided by TACC Ranger and NCSA Cobalt un-
der Grant number TG-DMR060050 and TG-MSS100004.
E.M.B. thanks PICT 1024, of the Argentinean Research
Agency, for funding. The help of Dr. D. Correll is greatly
appreciated. Discussions with Dr. V. Bulatov are gratefully
acknowledged. The authors also thank Ms. Chia-Hui Lu
for providing transmission electron micrographs of mono-
crystalline tantalum loaded by laser shock.

References

[1] Tipper CF. Metallurgia 1949;39:133.
[2] Dodd B, Bai Y. Ductile fracture and ductility. New York: Academic

Press; 1987. p. 97.
[3] Gurson AL. J Eng Mater Tech 1977;99:2.
[4] Needleman A, Tvergaard V. J Mech Phys Solids 1984;32:461.
[5] Tvergaard V, Needleman A. Acta Mater 1984;32:157–69.
[6] Potirniche GP, Hearndon JL, Horstemeyer MF, Ling XW. Int J

Plasticity 2006;22:921.
[7] Stevens AL, Davison L, Warren WE. J Appl Phys 1972;43:4922.
[8] Meyers MA, Aimone CT. Prog Mater Sci 1983;28:1.
[9] Wolfer WG. Phil Mag A 1988;48:285.

[10] Ahn DC, Sofronis P, Kumar M, Belak J, Minich RJ. Appl Phys
2007;101:063514-1-6.

[11] Lubarda VA, Schneider MS, Kalantar DH, Remington BA, Meyers
MA. Acta Mater 2004;53:1397.



1372 Y. Tang et al. / Acta Materialia 59 (2011) 1354–1372
[12] Ashby MF. Phil Mag 1970;21:399.
[13] Ashby MF. In: Kelly A, Nicholson RB, editors. Strengthening

Methods in Crystals. Amsterdam: Elsevier; 1971. p. 137.
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