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ABSTRACT

It is proposed that the grain.size dependence of the yield stress of metals
is due to the elastic incompatibility stresses at the grain boundaries. For clarity,
the process of yielding is divided into three stages. In the first stage (prior to
microyielding), the differences in elastic properties erising from the elastic aniso-
tropy of adjacent grains establish localized stress concentrations st the grain
boundaries. In the second stage, the stress concentrations at the grain boundaries
result in localized plastic flow ; this is the microyield region. The generation and
motion of these ‘ geometrically necessary ' dislocations attenuates the stress concen-

rations; & work-hardened grain-boundary layer is formed. As the stress is increa-
sed, the polycrystalline metal acts as a composite material consisting of a continuous
network of & work-hardened grain-boundary material and discontinuous bulk
material. The bulk is prevented from flowing plastically because the continuous
network of work-hardened grain-boundary film acts as a reinforcement. Macro-
yielding occurs when the applied stress is such that the grain-boundery film reaches its
flow stress level ; thisis the third stage. Qualitatively, a polycrystal with a greater
grain size has & proportionately smaller amount of grain-boundary reinforcement net-.
work and, consequently, a lower macroyield stress. This concept is developed into
queantitative relationships between the grain diameter and the macroyield stress.
Finite-element analysis is used to establish the value of the grain-boundary stresses
caused by elastic compatibility conditions for & few simple cases. Theoretical
predictions are compared with experimental observations made for nickel over a

wide range of grain sizes.

§ 1. INTRODUCTION

y

v

The well-known Hall-Petch relationship (Hall 1951, Petch 1953) has been
applied to a variety of different metals over the past 20 years with considerable
success. A number of theories explaining the effect in terms of dislocation—
grain-boundary interactions have been advanced. The first generation
of theories (Hall 1951, Petch 1953, Cottrell 1958) is based on the idea of pile-up.
The important concept of the grain boundary as a dislocation source was
introduced by Mott (1946) and later by Li (1962, 1963 a) ; Li proposed a Hall-
Petch-type relationship (Li 1963 b, Liand Chou 1970) based on grain-boundary
ledges acting as dislocation sources. The Hall-Petch relationship is not free
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738 M. A. Meyers and E. Ashworth

of controversy (Baldwin 1958, Conrad 1963) ; systematic experimental investi-
gations for Armco iron (Anderson, King and Spreadborough 1968), modified
AISI 1010 steel (Abrahamsom 1968) and nickel (Thompson 1973, 1977) over a
broad range of grain sizes (4-200 um for Armco iron; 0-34-10 um for AISI
1010 ; 0-12-130 um for nickel) showed very clearly that the plot of yield stress
versus D-1/2 is not linear. These results indicate that the linear behaviour
is an approximation applicable only over a limited range of grain sizes.

Experimental evidence obtained by transmission electron microscopy
indicating that grain boundaries are sources of dislocations (Tangri and Malis
1972, Murr 1975, Murr and Hecker 1979) has steadily been amassing, and recent
observations confirm the fact that the onset of macroyielding is associated with
dislocation generation from grain-boundary sources (Murr and Hecker 1979).
Additionally, Sethi and Gibala (1976, 1977) have shown conclusively that
dislocations generated at an interface between a single erystal and an oxide
layer played an important role in the low-temperature macroyield stress.

However, the initiation of plastic flow takes place at stresses much lower
than the conventional macroyield stress. Thus, the name microyield stress is
commonly used to designate the stress at which the first indications of disloca-
tion activity are noticeable, while macrostress is characterized by massive
dislocation generation and motion, and a substantial deviation from the elastic
deformation regime. There is a remarkable group (in their self-consistency) of
papers devoted to microyielding in the Fe-39%, Si alloy and its study by etch-
pitting techniques. Suits and Chalmers (1961), Worthington and Smith (1964),
Brentnall and Rostoker (1965) and Douthwaite and Evans (1973) all presented
evidence that is mutually supportive : the microstrain region is characterized
by dislocation emission from grain boundaries, these being the main sources.
The critical experiment conducted by Douthwaite and Evans (1973) showed
incontrovertibly that the stresses are higher in the grain-boundary region
than in the centre of the grains. They made a scratch on the surface of a
specimen, subsequently pulling it in tension. Dislocation emission from the
grain boundaries. started at a stress below that at which the dislocations
generated by the scratch could move. This proves that the stress at the grain
boundaries was higher than that at the scratch (representative of the bulk).
Margolin and Stanescu (1975) found similar results for 8-titanium : they report
the onset of plastic deformation at the grain boundaries, proceeding inwards ;
based on their observations they proposed an expression for polycrystalline
strengthening at constant strain as a function of grain size. The model
proposed here is an extension and generalization of this.

The stress required for twinning provides additional support for the hypothe-
sis of higher stresses at grain boundaries. At lower temperatures, b.c.c. metals
exhibit a marked decrease in the mobility of screw dislocations (Talia,
Fernandez, Sethi and Gibala 1980) rendering twinning a more attractive de-
formation mechanism. Hull (1961) found, for Fe-3% Si, that a Hall-Petch-
type relationship was obeyed when yielding was initiated by twinning ; similar
results were found by Marcinkowski and Lipsitt (1962) for chromium.

The experimental evidence presented in the above references, among other
sources, and the concepts of inhomogeneous plastic flow developed by Ashby
(1970, 1971), Thompson and co-workers (Thompson, Baskes and Flanagan
1973, Thompson 1975, 1977) and Margolin and co-workers (Margolin and
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Stanescu 1975, Jinoch, Ankem and Margolin 1978, Ankem and Margolin 1980)
clearly show that the early theories of the effect of grain size on the yield
stress are not realistic. The object of this paper is to propose a model con-
sistent with the experimental observations above and incorporating the concept
of inhomogeneous elastic and plastic deformation. The model is divided,
for the sake of clarity, into three different stages. These stages are character-
ized by the dominance of different deformation modes and stress distributions.
First stage. The difference in elastic response between adjacent grains is
responsible for the generation of incompatibility stresses at the grain boundaries
(fig. 1 (a)). These incompatibility stresses, added to the resolved shear stress
due to the applied load, result in a total stress at the grain boundaries con-
siderably higher than that experienced by the bulk of the grain (o5 > og).
Hence, the grain boundary flows plastically prior to the bulk (fig. 1 (b)).
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Sequence of stages in polycrystalline deformation, starting with (d, ) localized
plastic flow in the grain-boundary regions (microyielding), forming a grain-
boundary work-hardened layer (c,d) that effectively reinforces the micro-
structure, and leading to (e, f) macroyielding in which the bulk of the grains
undergo plastic deformation.

Second stage. The plastic flow of the grain-boundary region attenuates.
the stress concentration; geometrically necessary dislocations accommodate
these stresses (figs. 1 (b) and 1 (¢)). This marks the onset of microyielding.
The dislocations do not propagate throughout the whole grain because of
cross-slip induced by the difference of orientation between the maximum shear
stress (due to the applied load) and the stress concentration caused by elastic
incompatibility. The work-hardened grain-boundary layer has a flow stress
o068, While the bulk has a flow stress ;5 (0,65 >0y5). The material behaves,
at increasing applied loads, as a composite made out of a continuous network
of grain-boundary film with flow stress 0,5 and of discontinuous ‘islands ’ of
bulk material with flow stress o,5. The increasing applied stress o,p does
not produce plastic flow in the bulk, in spite of the fact that o,p > oqy, because
the continuous grain-boundary network provides the structure with rigidity
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(fig. 1(d)). The total strain in the continuous grain-bounda.ry network does
not exceed 0-003, since it is elastic; hence, plastic deformation in the bulk is

inhibited. This situation can be termed plastic incompatibility.

Third stage. When the applied load is such that the stress in the grain
boundary region becomes equal to o;;, plastic deformation re-establishes itself
in this region. The plastic deformation of the continuous matrix results in
increases in stress in the bulk with plastic flow (fig. 1 (c)). This marks the
onset of macroyielding. After a certain amount of plastic flow, dislocation
densities in the bulk and grain-boundary regions become the same ; since both
regions have the same flow stress, plastic mcompatxbﬂxty disappears, and one
has Osp=0GB=0p (flo' 1 (f

The nature and extent of the elastic incompatibility stresses will be dis-
cussed and calculated in §2; finite-element analysis is used to establish
quantitatively their magnitude. Section 3 contains the derivation of the model
leading to equations relating the macroyield stress to the grain diameter ;
predictions of the model are compared with experimental observations reported

by Thompson (1977) in § 4.

§ 2. ELASTIC INCOMPATIBILITY
2.1. Basic assumptions

Although a polyerystalline aggregate is isotropic if the grains are randomly
oriented, the individual grains exhibit the elastic anisotropy characteristic of
their crystal symmetry., Hook and Hirth (1967) have investigated in detail
the compatibility stresses using bicrystals. The approach used here is similar.
A few simplifying assumptions are required. Although Smith (1952) has shown
that grainsin an ideal polycrystal are tetrakaidecahedra, two cubic and adjacent
crystals will be considered and the interfacial stresses will be determined as a
function of applied stresses. It is known that there are long-range interactions
between grains : for simplicity, they will be neglected. Animportant assump-
tion used is that the stress acting on all the grains is the same. The assumption
made in the analyses of both Taylor (1938) and Bishop and Hill (1951) of the
plastic deformation of polycrystalline aggregates is that all individual grains
undergo the same strain as the tensile specimen. This assumption is not
applicable here, as will be shown by the following analogy. The grains can
be imagined as rubber and steel spheres filling a box. If a ram compresses-
the top of the box, the rubber spheres will undergo more deformation than the:
steel spheres. The Taylor-Bishop-Hill analysis is realistic in the plastic
regime (constant volume, v=0-5), while the assumption of the present model
parallels more closely the elastic response of metals (v~0-3). The Taylor-
Bishop~Hill analysis is unable to predict a grain-size dependence of yield stress
and work hardening. Recently, the effect of grain size on work hardening
has been incorporated by Thompson by applying and modifying the concepts of
-Xchby (1970, 1971) on inhomogeneous deformation ; how e\'er, this treatment
is restricted to the plastic regime. :

Hirth (1972) divided the incompatibility effects into ’mo t} pes. Thls
same approach will be used here, and a Iong1tudmal and a shear incompatibility
will be treated. Figure 2 (a) shows two cubic grains : when subjected to the
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Development of incompatibility stresses along interface between two grains. (a)
Initial cubic grains with identical dimensions. (b) Deformation of two grains
under identical applied stresses. (c¢) Incompatibility stresses developed at
interfaces.

same applied stress o,p, they will exhibit different strains if their crystallogra-
phic orientation is different. Figure 2 (b) shows how these distortions might
take place. The interfacial bonding, however, establishes the condition of
continuity of strains across the grain boundary ; fig. 2 (¢) shows this situation.
The left-hand side of the figure shows the longitudinal incompatibility, in
which the crystallographic orientation is such that the faces of the cube remain
perpendicular to each other. Crystallographic orientations such as [100]
and [111] are characterized by this type of response. The right-hand side of
fig. 2 (c) shows the situation in which the applied stress o p generates shear
strains in the reference system defined by the tensile axis. This occurs. for
orientations such as [110]; it is called, in this paper, shear incompatibility.
The longitudinal and shear incompatibilities will be assessed in §§ 2.2 and 2.3."

2.2. Longitudinal incompatibility

In order to determine the elastic longitudinal strain undergone by the
monocrystalline cubes, it is convenient to convert the elastic constants into
an effective elastic modulus. The determination of Young's modulus of single
crystals is described by Nye (1957). For crystal systems exhibiting cubic
symmetry,

1 R .
E=Su" 2(8y; = S =38 A L2+ LA+ 1213, (1)
iik . ) : .
where E,;:. is Young’s modulus along the [ijk] direction, S,;, S;, and §,, are
the compliances of the crystal and I, I; and [, are the direction cosines of
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Compliance constants, Poisson’s ratios and elastic moduli along [100], [110] and [111]
for iron and nickel (McGregor Tegart 1966).

Elastic constant Metal
(ambient
temperature) Fe Ni
8;,(Pa) 0-76 x 1071 0-73 x 10~
~ 8yy(Pa) —0-287x 10™1 —0-27x 1071
S,(Pa™) 0-892 x 101 0-80 x 10~1
v 0-28 0-31
L, 1, 1,{100) 1,0,0 1,0,0
2 4/2 2 4/2
1, 1, 1,[110] SLRLY viv2e
V333 V333
o B 333 333
E00)(GPa) 1250 1369
E1110)(GPa) 2000 2325
Fig. 3

/
- & 1
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;_ Op
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Deformation of two cubic grains showing longitudinal elastic incofnpatibility (for
instance [111] on right and [100] on leit). Compatibility’ restrictions pro-
ducing distortions 6, < 8,< ,< 6, (and associated shear strains) at interface.
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the [ijk) direction with respect to the crystal axes. For the cubic-system
the [100], [110] and [111] directions provide the extremes of response. The
table lists the compliance constants and direction cosines of the [100], [110]
and [111] directions for iron and nickel; from these the elastic moduli are
calculated by applying egn. (1). It can be seen from the table that the
differences in elastic moduli are dramatic. Young’s modulus in the [111]
direction is over twice as high as in the [100] direction ; this is the single most
important fact in the derivation.

The [100] grain would undergo roughly twice the strain of [111] (fig. 2 (b)).
However, they are bonded, and the compatibility conditions cause considerable
distortion at the interface (fig. 3). An imaginary grid drawn on the face of
the cubes shows the distortions. One can see clearly that the angle @ increases
as ‘one moves away from the centre plane (8,>8,>6,>6,>6,=0). The
distortion @ generates the interfacial shear stresses. The total shear stress
(and strain) acting on the interface are the tensorial sums of two components
(sum of components referred to same system of axes) :- the homogeneous shear
component of the applied tensile stress (and strain) and the localized interfacial
shear stress (and strain) due to anisotropy. Thus,

TT=Tg + TH (2')
or

Yr=v1+vu (3)
where the indices T, I and H refer to the total, interfacial and homogeneous
stresses and strains. In order to obtain this total stress, use will be made of the
principle of superposition which states that two strains may be combined
by direct superposition. The interfacial strains have to be calculated as
functions of the angle between the interface (grain boundary) and the tensile
axis. Figure 4 shows the configuration for x=90°, «=0 and 0<ax<90°
The calculation of interfacial strains is given in the Appendix, using the
finite-element method for two geometries: x=0 and «=90°. The finite-
element method has to be introduced because it is exceedingly complicated to
obtain the displacement profiles by conventional methods of analysis. For a
general orientation of «, one can decompose the stresses as seen in fig. 4 (c).
The superposition of the interfacial strains due to the four stress systems applied
separately provides the overall interfacial strain, which is )

yi=(yoi+ (yi)a+ (¥1)s + (¥1)e (4) |

(1), being obtained from a stress geometry identical to that in fig. 3.

The shear strains (y;); and (y;), depend on the level of the externally
applied load. It is shown in the Appendix that (), is proportional to the
applied stress ¢,p. For the general stress configuration of fig. 4 (c), one has

(yth=koapsina. ' (5)
Similarly
(7’1)2=k2 Tap COS a. (6)

It is shown in the Appendix that there is no contribution to interfacial
distortions beyond that generated by the homogeneous shear strain from either
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Fig. 4
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Three orientations of stress axis with respect to grains. (a) Stress axis perpendicular
to interface plane (x=90°) ; (b) stress axis parallel to interface plane (x=0);
(c) stress axis inclined to interface plane and decomposition of stress state
into four different stress configurations by the application of the principle
of superposition.

(v1)3 or (yy)s- They can be assumed to be zero, since they correspond to> the
homogeneous shear strains acting on the whole body. Substituting eqns.
(3) and (6) into eqn. (4) gives

y1=0,p(k; sin «+k, cos «) | (7)
and, @ being the shear modulus,
r1=0,pG(k, sin a + £, cos a). (8)
If one wishes to calculate the total stress, one has to add the term due to the

homogeneous shear stress (eqn. (2)):

. TAp . o :
rr=04pG(k, sin a{l:z COS o) +—1;—P- sin 2a. ‘ - (9)

-
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Applying the constants from the table to the finite-element analysis of the
Appendix, one finds that k; =3 x10-12 Pa~! and k,=12x 10-12 Pa~! for nickel.
The grain with the highest shear modulus is the one under highest interfacial
shear stress. Taking the [111] grain, one finds, substituting the values into

eqn. (8),

=115x10"3(3 sin « + 12 cos «). (10)
Gap
The maximum value of the interfacial stress/applied ratio occurs for a«a=0
(geometry shown in fig. 4) :

=1-37. (11)
gspP
Hence, the interfacial shear stress is three times higher than the resolved shear
stress homogeneously applied on the grain (ry =0,4p/2).

2.3. Shear incompatibility
Figure 5 shows the elastic shear strains undergone by two adjacent cubes
when stressed under tension. In the reference system shown, one has

yw =tan §, or y,,=tan §, (12)

In order to determine §, and, consequently, y;; and the interfacial shear
stresses due to elastic shear incompatibility, an approach different from that
of § 2.2 has to be used ; the finite-element method cannot be used here because
the program only operates for isotropic materials, which do not exhibit shear
strains in the reference system defined by the tensile axis. Hence, a combina-
tion of tensor treatment of the cubic elastic constants and of the methods of
‘ mechanics of materials ’ will be used.

The case to be analysed is a crystal with [110] aligned with the tensile
axis. Other directions also result in shear strains y,,, but it suffices to provide
a preliminary estimate. The two [110] crystals in fig. 5 are oriented in such a
way that the shear strains take place along opposite dlrectmns ; if they occurred
in the same direction, the deformation would be compatlble The transfor-
mation of axes shown in the right-hand-side of fig. 5 (a) is performed in order to
find the components of the cubic elastic compliance matrix in the new system .
(45° rotation around Oz,;). From o

S’ k1= ltmlmlkollp‘gmnop'
S’ S

':_Tm = ‘5"1112 = llllllllllﬂsll + 112112l12122‘s’22 + lullzlnlzz 466 + 111111112l22812’ ( 1 3)

She=—2+ 22, ' (14)

where [;; are the direction cosines of the new coordinate system and S;;, and
S,., are the compliances in the tensor and matrix notation, respectwely
Applying values from the table for nickel, one obtains

S'6= —0-035 x 10-11 Pa-!,
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Fig. 5
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(a) Shear incompatibility when two grains having the [110] along the tensile axis,
but having the other directions making 180° are stressed in tension. (b)
Grain viewed as a beam that isloaded by P(z’;) until the faces regain normality.
(c) Reverse (but identical) situation to (b), in which an initially cubic beam is
sheared by angle 6 on application of distributed load P(z',). '
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The applied stress is o'}, ; hence, one has:

€12=8"1211 911 =—2ﬁ 0’1, =0-0175 x 10-1¢',,. (15)

On the other hand, one finds that S’;;=0 and, consequently, ¢;,,=0. In
order to detérmine the stress at the interfacial layer due to the distortion
6,, it is helpful to re-propose the problem as shown in fig. 5 (b) : a distributed
load P(z’;) required to produce a shear 6 in a beam which is placed on a fixed
support, (cross-hatched in fig. 5 (b)). One now has to revert to an isotropic
material (with elastic constants £ and ). Figure 5 (c) shows the inverse
problem, whose solution should be the same ; a short beam on a fixed support is
sheared by a distributed load to an angle 6. (The solution to this problem is
given by Higdon, Ohlsen, Stiles, Weese and Riley (1976).) The deflection of
the beam is produced by the bending moment and shear stresses. For long,
slender beams the bending-moment effect is dominant, while in short, heavily
loaded beams the deflection produced by shearing stresses is significant. The
beam in fig. 5 (c) has a square cross-sectional area, and the length L is equal to
the thickness D. Assuming a uniformly distributed load for simplicity (per
unit length of beam), one has the following expression for the total deflection
(egn. (a) in § 6-12 of Higdon et al. 1976) :

3wLt 3uwl?

P\ 354D T 4G (16)
But D=L and 4 =12, so
, 3w 3w 1 1 -
-El—':z—i+zz;—3w(ﬁ+z—d>. (17)
The deflection 6, is small, in such a way that
tan 6 =x—'—l=y =2¢',. (18)
S D s 12
Substituting eqn. (18) into eqn. (17), one arrives at
D tan 6
Y= O2E) + (1/46) (19)
From eqn. (13),
_0'012 X 10_110'11 .D (20)

"~ (1/2E)+(1/4G)

The load per unit beam thickness is, actually, the stress. This interfacial
stress, oy, is

0-012 x 10-11g, 5,

TARB (A

One can compute it for nickel by applying the values of E and G taken from the

table (taking the value of E for [110] and computing G therefrom) and cal-
culating the interfacial shear stresses :

TI=0.0120.‘\P (22)

(21)
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This value is very low, in comparison with the elastic longitudinal incom-
patibility stresses (eqn. (11)). Hencg, one can neglect the elastic shear incom-
patibility stresses.

§ 3. PLASTIC INCOMPATIBILITY
3.1. Microyielding in grain boundaries

The actual shear stress at the grain boundaries significantly exceeds the
homogeneous shear stress; the situation is depicted schematically in fig.
1 (a). Hence, yielding starts along the grain boundaries. Grain boundaries
have been known to be sources of dislocations ; Li (1963) and Price and Hirth
(1972) have proposed specific mechanisms. When the stress reaches the
critical level required for emission, localized plastic deformation will start.
These dislocations do not propagate throughout the grain for two reasons :

(1) the stress decreases rapidly with distance from the grain boundary, and

(2) the centre of the grains is under the control of the homogeneous shear
stress, which is a maximum at 45°to the tensile axis. On the other hand,
the interfacial and homogeneous shear stresses have different orienta-
tions. Figure 6 shows how the dislocations emitted from the grain
boundaries will undergo cross-slip. Extensive cross-slip and the
generation of dislocation locks will result in a localized layer with high
dislocation density.

X —ARREST WHEN
Tu OVERIDES 7

V,

AP

Dislocation arrest, cross-slip and reactions as they pass from the region of dominance
of r, to the region of dominance of 7.
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These dislocations generated at the interfaces can be classified as ‘ geo-
metrically necessary’ (Ashby 1970). Their introduction will accommodate
the two adjacent grains, decreasing the incompatibility stresses. Figure
1 (b) shows the levelling off of the stresses ; as the applied stress increases, the
ratio between interfacial and applied stress (eqn. (10)) decreases. The stresses
become homogeneous when the interfacial layer is completed (fig. 1 (¢)). This
marks the onset of the dominance of plastic incompatibility.

The microstructure shown in fig. 1 (¢) is composed of a continuous network
of grain-boundary material with flow stress o,z and discontinuous pockets
of bulk material with flow stress o,5. Here 045 can be considered as the yield
stress of monocrystalline material when oriented for multiple slip, while o5 is
the flow stress of the work-hardened grain-boundary layer. Hence, one can
consider the material as a composite ; the yield stress of composite materials is
treated in detail by Kelly (1971). Models have been developed taking into
account the morphology, connectivity and plastic constants of the different
components ; for the purpose of the model presented here, the simplest situa-
tion will be analysed (§3.2). One can see intuitively that the fraction of
grain-boundary material increases as the yield stress of the composite increases.

3.2. Mathematical analysis

In the most simple case in which reinforcing fibres are continuous and
parallel to the tensile axis, and neglecting differences in elastic constants
between the matrix and fibres, it is customary to apply the simple ‘law of
mixtures ’ to predict the yield stress of the composite :

Oc= Vtaft+ anofnm' (23)

Here, o, oy and o,,, are the flow stresses of the composite, fibre and matrix,
respectively ; ¥V, and V_, are their volume fractions. Indeed, Margolin and
Stanescu (1975) apply this equation. In the case of continuous fibres the
volume fraction of fibres is equal to the area fraction along a normal cross-
sectional area. It is this latter parameter that is of importance, because it
determines the load-bearing partitioning among the two components of the
composites. For the case under investigation, a continuous network of
grain-boundary material with thickness ¢ in a material with grain size D,
one does not have the equality above. Hence, a more correct formulation is :

oy =dpgog+ Agpoiges (24)

where Ay and Ay are the area fractions of the grain-boundary network and-
of the bulk pockets. For simplicity, it will be assumed that both adjacent
grains and grain-boundary regions have the same elastic moduli; this is
different from the assumptions made in § 2. The new assumptions are justified
by the fact that one is now in the region of plastic incompatibility. Equation
(24) expresses the fact that the polycrystalline ¢ composite * will yield plastically
when the stress at the grain-boundary layers reaches a critical level equal to
oygp- Plastic flow in the interior of the grains is inhibited, when o,p> o3, by
the continuous network of grain-boundary material. If the network were
discontinuous, one could not use eqn. (24). .

From eqn. (24) one can obtain an expression relating the yield stress and
grain size. Depending on the simplifying assumptions, different expressions
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~1
(4]
()

(a) Polycrystalline aggregate viewed as composite material composed of bulk and
grain-boundary material, with flow stresses oz and o;gp respectively. (b)
Idealized spherical grain of diameter D with grain-houndary layer of thick-
ness t; sections S;, 8,, 8. 8, and S, reveal different proportions hetween the
areas of the bulk and grain-boundary material.

are obtained. Two derivations will be presented. The first is based on the
sketch shown in fig. 7 (a). The grains are assumed to be spheres with diameter
D and with a grain-boundary layer of thickness {. A diametric cross-section’
will establish the area fractions !

_17[D*=(D-2t)*]

dgp= ot , (25)
3m(D - 21)°
4
A=t (26)
Substituting éqns. (25) and (26) into eqhs. (24) gives
03'=UfB +4(afGB "U{é)tD—l-4(O'f(;B‘—.O’fB)t2D“2. ’ o (27) :

Equation (27) predicts, as expected that o, =0y for very large values of D,
and o, =oy;z when D=2t (the whole of the material is grain-boundary layer).-
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A second equation can be obtained by making slightly more sophisticated
assumptions. If one takes a section through a material composed of quasi-
spherical gains with equal diameter, the intersections will not all be diametric.
‘Figure 7 (b) shows how this affects the average apparent diameter. The sec-
tions S;, Sy, S3, S, and S; yield different values for the diameter and different
widths of the work-hardened layer. If this correctionisintroduced, the average
diametric section is :

D2 :
_ b" (D2/’4—y2)112 dy _ ‘
[ dy
0
The average thickness is obtained likewise, as
(D-21)]2
D-u 6‘- {(D?4—y*) 2 —[((D—2t)/2) - y* ]2} dy
=D -
fody
0
D2 .
- 2t (D24 —yh)tidy
+-.5 s D2 . (29)
dy

(D202
One finds that {~1-8¢ for ¢ substantially smaller than D. When t=D/2, one
has the same relationship as eqn. (28). Margolin and Stanescu (1975) used the
expression below :

=157t (30)
Calculating the average bulk and grain-boundary area fractions per cross-

section assuming a mean diameter D and a mean grain-boundary thickness ¢,
one obtains

oy =0 +4{ogp— afB)ZE-l —4(ogp— 0:3)2252- (31)
Substituting eqns. (28) and (30) into eqn. (31), one arrives at
O"\- =0¢B -+ S(UIGB e U‘B)t.D_l -_ 16(U£GB - atB)lZD’g. (32)

If one assumes a constant ¢, eqn. (32) is approximately a D! relationship. *
The D-2 term is unimportant for large grain sizes (D=2 much smaller than D-1).
When the grain size decreases, the negative D-2 term becomes more important,
‘ bending down ° the curve so that it approaches o;gg (wWhent=D/2). On the
other hand, different dependencies can be obtained by considering a variable ¢.
One way of obtaining the classical D-1/2 dependence for values of D greater than
2t is to assume that

t=kD1R, (32 a)
Physically, the meaning of eqn. (32 a) is that, at small grain sizes, ¢ increases
rapidly with grain diameter; at large grain sizes the dependence is smaller.
Substituting eqn. (32 a) into eqn. (32), one obtains

oy =0+ 8k(ogap — orp) D712~ 16k%(0y 5 — 0y5) DL (33)
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Equation (33) predicts a D-1" relationship at large grain sizes, when the D=1/
term predominates. As the grain size decreases, the D~! term becomes more
important, ‘ bending down * the curve until it flattens out at t~D)/2, for a

stress o =o0¢gp-

§ 4, COI\.IPA.RISO.\’ WITH EXPERIMENTS

The experimental results obtained by Thompson (1975, 1977), Anderson
et al. (1968) and Abrahamson (1968) over a wide range of grain sizes provide the
verification for the model proposed in this paper. The results obtained by
Thompson, especially, show that large deviations from a Hall-Petch relation-
ship are obtained at very small grain sizes. Figure 8 shows the results obtained
by Thompson (1977) for nickel. It can be seen that the Hall-Petch relation-
ship is not obeyed for grain sizes below 1 um ; there is a yield-stress plateau.
Equations (27), (32) and (33), the three formulations of the model, are also
plotted in fig. 8. The value o,53=20)MPa, o,;5=280MPa and ¢t=0-2 um
were used. The choice of these values is justified by the general morphology
of the plot of o, versus D-12, The flow stress of a monocrystal oriented for
polyslip, corrected by the Taylor factor (J/ =3-06) was found to be close to
20 MPa (Thompson 1977). The yield stress seems to saturate around 280 MPa,
so this is thought to be a reasonable value for o;;;;. For eqns. (27) and (32), ¢
was assumed to be constant ; since the change of regime takes place for a grain
size of about 0-4 pm (D-12~1-5 um=12), a grain-boundary thickness of 0-2 um
was thought to be reasonable. It should be noticed that no adjustable para-
meter, other than the appropriate choice of oy, o3 and £, was used in egns.
(27) and (32).

Equation (33), on the other hand, contains a parameter k£ which was not
available ; assuming a best fit for the curve in the Hall-Petch range (cross-
hatched in fig. 7), a slope of 260 was found. From this a value of 0-125

Fig. 8
300
Ctes .:,- 25 e hd
NORMAL ‘e 4
= &LG-EPETCH H 7
e
: %
@ 200 Q 4 ‘
w Ry /
- N\ [/ Mook (eon.27)
N
7] N / ————= MODEL (EON. 32)
3 N MODEL (ECN. 33)
9ok \\§§ / ®  EXPERIMENTAL RESULTS
E \'X&% / THOMPSON (1975, 1577)
N/
Cra :
1 1
(o} 1 2 3
0"2(um™"2)

Comparison of model with results obtained by Thompson (1975, 1977) for nickel.
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(260 x 8 xk) was obtained from e'qn. (33). Equation (33) has the advantage
of predicting a D1/ relationship for the larger grain sizes ; as the grain size is

decreased beyond a certain value the negative term (increasing in magnitude
with D-1) becomes more and more important. This curve approaches the
o =280 MPa line asymptotically because the thickness of the grain-boundary
layer decreases as the grain size is decreased. Of the three formulations,
eqn. (33) seems to provide the best fit with the experimental results obtained by
Thompson (1977).

§ 5. CoNcLUSIONS

(1) A model for the effect of grain size on the yield stress of metals is pro-
posed. The model rests on the following sequence of microdeformation pro-
cesses. (a) Elasticincompatibility stresses at the grain boundaries are produced
by the elastic anisotropy of crystal. (b) These elastic anisotropy stresses,
. added to the uniformly distributed stress (resolved shear stress due to applied
" load), exceed the flow stress of the grain boundary before the polycrystalline
aggregate, as a whole, is able to deform plastically. (c) A work-hardened
layer of grain-boundary material is formed in a continuous network pattern,
relieving the elastic incompatibility stresses. (d) At this point, the poly-
crystalline aggregate is effectively a composite material composed of a con-
tinuous network of interfacial material (o,;y) and discontinuous °‘islands’
of bulk material (o, < 0y¢;p)-

(2) The model is expressed quantitatively as three equations relating
the macroyield stress to grain size, and resting on some slightly different
hypotheses. Two equations, based on a constant thickness of the grain-
boundary layer, lead to a D-! relationship for large grain sizes. The third,
based on tcc D12, leads to the classical Hall-Petch relationship (D-*?2) for large
grain sizes.

(3) The model is comnpared with experimental results reported by Thompson
(1977) over a wide range of grain sizes for nickel.
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APPENDIX

The finite-element analysis
The determination of the stress and strain distributions along the grain
boundary is beyond the possibilities of an analytical solution; hence, it is
necessary to employ a numerical model. Finite-element analsyis was chosen,
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a simple two-dimensional plane strain/plane stress constant strain-triangle
computer code being utilized. The finite-element method has found a wide
application in a variety of structural engineering problems. The method
subdivides the continuum into a mesh of elements of finite sizes; triangular
elements are the simplest. The continuum mechanics equations for continuity
and equilibrium are replaced by matrix equations involving ‘equivalent’
loads on each element, the displacement of each node or corner of the element,
and the ‘stiffness’ of the total system. The matrix equations are solved for
the unknown nodal displacements by large-matrix inversion techniques.
Stresses in each element are then calculated from the corresponding nodal
displacements. The stresses and displacements calculated by the method
are approximate and their accuracy depends on the sophistication of the
mesh and type of finite element used. The computer program used is a
modification of the program given by Desai and Abel (1972). Margolin and
co-workers (Margolin and Stanescu 1975, Jinoch ef al. 1978, Ankem and Margo-
lin 1980) have used similar codes to treat micromechanical problems.

Figure 9 shows the mesh used in the present analysis. Elements 1 to 40
belong to the first grain; elements 41 to 80 belong to the second grain ;
the grid has an axis of symmetry, shown in fig. 9. Accordingly, the elements
in which the interfacial shear strains are greatest are elements 5 and 80;

Fig. 9
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Finite element mesh used to simulate the grains. Mesh size is reduced close to
interface. Note axis of symmetry. o
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hence, they are lowest at elements 40 and 50. The elements. are smaller
close to the interface to allow for larger changes in strain. In its present form,
the number of elements of the program is limited to approximately 100. The
program can be applied to only two stress states : plane stress or plane strain.
The state of stress that more closely resembles the one encountered in the
uniform extension of the grains is a uniaxial stress state. Both plane-stress
and plane-strain configurations were used ; however, all the results reported
are for a plane-strain configuration (the third dimension of the cube is assumed
to be infinite), and consequently an error is inevitably introduced. The
stresses and displacements at the centre of the elements are calculated ; one
of the nodes is fixed so that its displacement is set equal to zero. Figures 10,
11 and 12 show the displacements for three different configurations of applied
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stress. They are obtained by varying the orientation of the surface tractions
acting on the grid of fig. 9. The applied stress is 102 MPa and the grid (grain)
size is about 10 um for the three configurations. These configurations corres-
pond to the orientations needed to calculate the interfacial strains of fig. 4 (c).
The computer-generated displacements were plotted at three positions (a,
b and c in figs. 10 and 11). It can be seen that the interfacial shear strain,
given by the tangent of the angle 6 at the interface, is the greatest for a and zero
for ¢. This is expected, because the distortions should be zero at the central
plane (because of the symmetry) and increase as the distance from it increases,
and confirms the schematic indication of fig. 3. The interfacial strains (y;),
(fig. 10), (yy), (fig. 11) and (y;), (fig. 12) are calculated by taking the tangent of
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Fig. 14
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the maximum distortion 8 (at a). It can be readily seen that (y;), is substan-
tially larger than (y), for the given cube size and at the applied level : (y1);=
4(yp);- The ratio should be fairly independent of cube size and stress level.
There is no per se contribution to interfacial strain from the configuration of
fig. 12 because the displacement fields do not exhibit an inflection point at the
interface. The angle 6, at the interface has essentially the same value as that
at a region removed from it in grain [111] (¢’,). Hence, the displacement
shown represents the homogeneous contribution to shear; the configuration
providing (y;); was not analysed by the finite-element method, because it is
essentially identical to the one providing (y;),; if one is operating under con-
ditions in which the strain tensor is symmetric (y,;=1y;, in fig. 4 (c)), one
should not expect any contribution to the interfacial strain from it.

The effect of grain size on the displacement fields was assessed by decreasing
the grain size of the configuration of fig. 10 to 1 and 0-1 um. The resultant
displacement fields are shown in figs. 13 and 14 respectively. Itisimmediately
seen that the displacements are exactly scaled down in the same proportion,
resulting in no change in (y;),. The result is really significant and indicates
that no change in interfacial stress concentration should be expected if the
material responds as modelled in the previous analysis. The grain boundary
is a region in which the atoms are relaxed from their original lattice positions ;
solute atoms are often attracted to the grain boundary, resulting in segregation.
There are other situations in which the solute atoms are repelled from it,
causing denudation. These compositional changes reflect themselves in
changes in the elastic constants. An attempt was made to assess the effect
of the interfacial layer on the stress level at the grain boundary. There are at
least two parameters : Young’s modulus and thickness. By taking an inter-
facial layer with a thickness of 0-2 um and assuming its Young’s modulus to be
80 GPa, the results presented in fig. 15 were obtained. The effect of grain
size is clearly seen. The finite-element mesh had to be modified to allow
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Fig. 15
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this interfacial layer to be introduced. From a comparison of figs. 15 (a)
and 15 (b), it can be seen that (y;), is substantially lower Tor the 1 pm than for
the 10 um grain size. Thus, one can conclude that grain-boundary segregation
and denudation might have an effect on the incompatibility stresses, and
consequently on the grain-size dependence of the yield stress.
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