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INTRODUCTION AND ASSUMPTIONS

The present work focusses on the tip of the shear band,
and assumes that the critical phenomena dictating the propaga-
tion or arrest of a shear band occur at the tip. This
approach is analogous to fracture mechanics in which the crack
tip is the region where the relevant processes are taking
place, while the crack surfaces are merely the product. The
driving energy for the extension of the tip comes from an
increase of the imposed displacement, which generates shear
stresses and strains., In the analysis presented in this paper
the plastic deformation ahead of a shear band is calculated as
a function of imposed displacement. A number of assumptions
are required to render the problem tractable. The principal
assumptions are given and justified below.

a) Negligible flow stress in shear band (behind the tip).
Post—-deformation measurements have shown that the hardness in
the shear band can be very high and often exceeds that of the

surrounding material. However, during the process of
propagation, plastic deformation is highly localized in the
shear-band region, leading to significant temperature

increases. Temperatures can approach and possibly exceed the
‘melting point.

b) An adiabatic stress—-strain curve represents the plastic
deformation process. An elasto-plastic model that would
incorporate these variables and also include heat transfer
would be exceedingly complex. Since plastic deformation 1is
occurring at a high strain rate, the assumption of
adiabaticity 18 a reasonable one. The use of an adiabatic
stress—strain equation was introduced by Olson et all and
greatly simplifies computer calculations, allowing one single
equation to represent the behavior of the material over a
temperature range up to the melting point; the strain rate is
assumed constant. For the model presented here the adiabatic
stress—-strain curve for quenched and tempered HY-TUF steel
obtained by . Olson et al.l ig used; the computational
predictions are compared with those of an isothermally
deformed material,
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c) The body is assumed to be in quasi-static equilibrium
throughout the deformation process. As such, wave-propagation
effects are absent. In order to express the dynamic movement

-of the body, the stresses are assumed to increase along the

adiabatic stress-strain curve (thus, thermal conductivity 1is
not considered) at the high imposed strain rate.

The adiabatic stress-strain curves are characterized by
initial work hardening followed by work softening; a plastic
ingtability strain defines the bounds between the two regimes.
For the model herein developed, the adiabatic stress—strain
curve 2I:'or_f high strength steel determined at a strain rate of
Y = 10° s in a torsion test by Olson et al.” was used; it is
shown in Fig. 1.

1

Converting Olson et al.'s equation into effective

stress versus effective strain:

0 =T, (1 +aEp) exp(BE p) (1]

where G = 1588.3 MPa, o= 13.6, B.= 7.24, Tp = 0.0646,

and ‘Fmax = 1868.9 MPa. The material constants for elastic
deformation are E = 206.7 GPa (Young's modulus) and v= 0.28
(Poisson's ratio). In order to compare the propagation of the
shear band under an adiabatic condition with the progressive
deformation produced under conditions where no instability
occurs, a work hardening curve shown by the broken line (Fig.
1) was developed. It simulates the isothermal behavior of the
material, if the assumption that instability is generated by
thermal softening is a correct one. Up to the instability
strain Ypit is very close to the adiabatic curve. Beyond
instability, the two curves diverge markedly, with the work-
hardening curve being represented by:

T = 2240 (€, *+ 0.005) 0.0649 [2]

These assumptions allow the problem to be modeled by the
finite-element method for an elasto-plastic material. The
mechanical behavior of the material is assumed to obey the von
Mises flow criterion and the incremental theory of Prandtl-
Reuss. Deformation of the rectangular body is treated as a
plane-strain problem where displacements are given as the
boundary condition. The form of elements is triangular, and
the displacement function is expressed by a linear polynomial.
The adiabatic stress-strain curve given by Equation 1 is used
as a constitutive equation in the present code. 275

Metallographic observations indicate that the band
thickness, in steels, is in the range 1-3 um. 1In the model
developed herein the band width was assumed to have a
thickness of 20 ym. The material within the band is assumed
to have zero strength; the extremity of the band is taken to
be approximately semi-circular. Figure 2(a) shows the mesh
used to analyse the stresses and strains in the extremity of
the shear band. The shape is a rectangle with a width of 400
pym and a length of 500 um. The shear band is represented by a
notch with a semi-circular extremity with a 10 ym radius
(BAB') in Figure 2 (a); the notch has a depth of 60 ym and a
width of 20 um, The mesh contains 318 elements and 176 nodal
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Fig. 1. Effective stress-strain curves for HY-TUF steel in
quenched and tempered condition.

points. The shear band is considered to propagate into an
infinite material in the x-direction, so that the
displacements in x-direction given along a boundary DED' vary
linearly as shown in the Figure 2(b) and its boundary
condition in y-direction is fixed.

MODEL PREDICTIONS

Figure 3 shows the isostress and isostrain fields
developed after a displacement d is given. The stresses and
strains marked along the lines are effective values. It can
be seen that, although the stress level is fairly high in the
whole body (1588-1869 MPa), the plastic strain is concentrated
on a narrow band ahead of the notch tip, A thicker solid
curve in Figure 3 shows a contour line of T =1869 MPa and

'€p=0.0646; these values correspond to the maximum stress T max
and the instability strain 'Egat the transition point on the
adiabatic stress-=strain curve. The stress outside the contour
line shown by the solid curve increases with increasing
plastic strain due to strain-hardening; however, the stress
inside the contour line decreases with increasing plastic
strain due to strain-softening. This behavior is shown
explicitly in Figure 4(a), where the distributions of stress
and plastic strain are shown only in the vicinity of the notch
tip. The region contained within the isostress line (G =1869
MPa) is considered to correspond to the shear band. In order
to compare the propagation of shear band with the progressive
deformation produced in a material-which has no instability
region, the deformation of the notched body is determined for
the monotonic work-hardening curve, represented by Equation 2.
Figure 4(b) shows the distribution of effective stress and
plastic strain near the notch in the parabolic work-hardening
material. The deformation of the body and the distributions
of stress and strain are almost the same as those in the
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Fig. 2, Mesh division used for sample shear deformation; (a)
notch in a rectangular body; (b) boundary displacements
imposed along boundary DED.

material of the adiabatic curve except in the vicinity of the
notch tip. The isostrain line for €5 =0.0646 is shown by a
solid curve in Figure 4(b); this value is equal to the
instability strain T4 of the adiabatic curve. The stress
inside the contour lige shown by the solid curve increases
with increasing plastic strain. This behavior is the same as
that outside the contour, but opposite to that of the
adiabatic curve. This contour line reaches a distance of 50
pm from the notch tip when the tangential displacement is 6.87
pm. The concentration of strain within the €! = 0.0646
isostrain line, with the attendant reduction of stress, is the
critical feature responsible for the propagation of a shear
band. By increasing the imposed displacement d, this behavior
becomes more and more pronounced; the stress within the
instability strain contour line will decrease as d is
increased. This drastic difference between adiabatic and
isothermal deformation within the ?fg= 0.0646 envelope con-
trasts with the nearly identical isostress and isostrain con-
tours outside the envelope. This shows that the overall
stress distribution is very similar and explains the
localization of the shear along a narrow band.

In order to more clearly assess the effect of the
increasing tangential displacement d on the plastic strain
distribution along the symmetry axis OE, the plot shown ig
Figure 5 was made. The symmetry axis OE is indicated by xlx
in Figure 5. The dashed lines represent the isothermal (work-
hardening) behavior, while the full lines indicate the adiaba-
tic behavior. At imposed displacements below 3.60 pym, the two
conditions deform identically. As d is increased, the plastic
shear strain increases at a faster rate for the adiabatic than
for the isothermal curve., The difference is highest at the
notch tip. The length of the instability region is indicated
as S in Figure 6. This region is defined as the length of the
€b=0.0646 envelope for purposes of comparison with the work-
hardening curve. Again, the lengths S show marked differences
for the two cases beyond a critical displacement d. The
length of the instability region S increases very rapidly with
increasing displacement d for the adiabatic behavior.
Attempts were made at increasing the displacement d further,
but serious problems arose regarding the divergence of the
solution. Therefore, it was not possible to analyse the full
range of the adiabatic sttess-strain curve. However, the




trends shown in Figures 3-6 can only accentuate themselves as
displacement d is 'increased.

Fig. 3. Isostress (o) and isostrain
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Fig. 4(a). Isostress (G) and isostrain (€ ) contour lines near
the notch in material with adiabatic stress-
strain curve, Shear band is produced inside an
envelope of solid line E% = 0.0646.
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Fig. 4(b). Isostress (o) and isostrain (Ep) contour lines near
the notch in material with workhardening curves.
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Fig. 5. Comparison of plastic strain distributions along x1x
between material with adiabatic stress-strain curve
curve and material with monotonic work-hardening curve.
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