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Material behavior at high pressure and A laser based platform is used to Hydrodynamic simulations identify Significant changes in deformation

strain rate is not well understood and access shockless loading paths material locations to be examined between loading paths is observed
is programmatically significant
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P The methodology is now being implemented in two programmatic efforts: Multiscale Modeling and High Pressure Strength
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Future Work

Resolldification Based on this work a new technique has been proposed to investigate deformation properties under high strain rate, low pressure
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During ramped loading, source activiation leads to lower dislocation 1 begins loading conditions. If successful, the method could provide highly sought after data to constrain material constitutive models.
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