l

Nalerials Science and Engineering, 30 (1977)99 - 111

» 22

C Elsevier Sequoia S.A., Lausanne — Printed in the Netherlands

A Model for Elastic Precursor Waves in the Shock Loading of Polycrystalline Melals

MARC A. MEYERS

»

Dept. of Metallurgical Engineering, South Dakola School of Mines and Technology, Rapid City, South Dakola

$7701 (US.A.)
(Received March 28, 1977)

SUMMARY

When materials are shock loaded in a cer-
tain range of pressures, the shock wave is
preceded by an elastic wave. This elastic pre-
cursor wave can undergo relaxation and
changes in amplitude and rise time as it traver-
scs the material. Both the wave attenuation
and relaxation have been interpreted in the
past in terms of dislocation dynamics. This
study addresses itself to the wave rise times.
The different rise times reported in the litera-
ture are reviewed and some trends are identifi-
ed, namely, that (a) single crystals have usual-
ly shorter rise times than polycrystals, (b) rise
times increase with transit distance, and (c) in

. polycrystalline metals rise times are affected

b.y grain size and texture. A model for the rise
limes of elastic waves in polycrystalline
metals is developed. It incorporates the
following parameters: anisotropy of wave .

. velocity, scattering by grain boundaries, mode

conversion and deflection due to anisotropy

" - of adjacent grains, dislocation effects, and

intrinsic wave rise time. The results predicted
by the model are compared to experimental

a rgsults by Jones and Holland [26] for three
‘ different grain sizes and good agreement is
* found. Also, the model is consistent with

other results reported in the literature. .

L. INTRODUCTION

Shock waves in metals are usﬁally investi-
Eated under experimental conditions resulting
In a state of uniaxial strain. This can be

* accomplished, among other ways, by the

impact of a plane driver plate on a parallel
Plane target or by the direct detonation of
explosive in contact with the material. At low

peak amplitudes only an elastic wave is
generated. If the amplitude of the wave be-
comes higher than the Hugonot elastic limit
of the target material, the wave decomposes
into an elastic precursor and a trailing plastic
(shock) wave. Since the velocity of the plastic
wave increases with peak pressure, there is a
certain “‘overdrive” stress, above which the
plastic wave ‘‘gulps” the elastic precursor
wave. The elastic precursor wave has attracted
considerable interest in the past few years,
since it is possible to obtain information on
dislocation dynamics from it. It is needless

to say that dislocation dynamical considera-
tions are of tantamount importance to the
understanding of the substructure formation
in high-velocity deformation. Taylor and Rice
[1] first observed the decay of the elastic
precursor amplitude with depth of penetra-
tion into the target; Taylor [2] later explain-
ed it successfully in terms of the Johnson-
Gilman [3] expression for dislocation veloci-
ty. Another feature observed is yield point
formation [1, 4, 5] and, consequently, stress
relaxation behind the elastic precursor;
Barker, Butcher and Karnes (4] attributed it
to dislocation effects predicted by the
Jolinson-Gilman model. Kelly and Gillis [6]
showed that thermal activation models (e.g.,
ref. 7) for dislocation dynamics could explain
the observed decay behavior as well as the
Johnson-Gilman model. Johnson [8] extend-
ed the Taylor [2] interpretation of precursor
decay to polycrystalline metals. Rohde [9].
studied the precursor decay in iron shock-
loaded at temperatures ranging from 76 to
573 K and found that the data did not satisfy
entirely any of the following models: the
Johnson-Gilman model [3], the activation
energy model [7], or the linear damping
model [10]. The work has been reviewed

extensively [11 - 14].
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2. STATEMENT OF THE PROBLEM

While precursor attenuation and relaxation

have stimulated considerable work, its rate of

rise has only received scant atlention in the
past. To the author’s knowledge, Arvidsson
et al. [5] were the only ones to investigate
systematically the change in precursor rise
times and suggest a mechanism. However, if
one carefully analyzes the data available in

the literature, one can notice substantial diffe-

rences in the rise times. These variations are
not random, and there are some definite
trends that will be described below. Most of
the measurements reported were made using
quartz gages having dimensions well above the
grain sizes. Whenever a different technique
was used, it will be specified. Where no men-
tion is made, the use of quartz gages is
implicit. The following trends are observed in
the literature:

(a) Single crystals have a tendency to
exhibit shorter elastic precursor rise times
than polycrystals. Jones and Mote [16]
shock-loaded copper crystals (thickness
around 5 mm) with orientations [100],
[110], and [111] parallel to the shock direc-
tion and found rise times of the order 0.010
ps. An annealed polycrystalline copper sample
(average grain diameter of 4.5 mm) with a
thickness of 3.91 mm exhibited a sloping
precursor with a rise time of 0.1 us. It is
worth noticing, however, that the short rise
times were not observed in the pre-strained
Cu single crystals. Jones and Mote [16] attri-
buted the differences to dislocation effects.
Barker and Hollenbach [42] found shock-like
clastic fronts in synthetic Al,O; (sapphire)
single crystals, using interferometer instru-
mentation techniques. Gupta et al. [18]
found, in 18 out of 20 experiments with LiF
single crystals, that the rise times of the
elastic precursor waves matched the tilt of
the flyer plate target at the instant of impact.
That is, the rise times could, in 18 of 20 expe-
riments, be totally accounted for by the tilt.
This is equivalent to say that the rise times in
LiF are very short. Dick et al. [19] present
plots where the short rise times can be seen
(~0.01 ps); the only exception is an experi-
ment at a pressure below the dynamic yield
stress.

Single-crystal beryllium was shocked by
Pope and Stevens [20] and Pope and Johnson

[21]; shocking was done by plate impact apg °
along the a and c axes, as well as off-axig
directions. In all cases Lhe rise times of tp,
clastic waves were of the order of a few napg_ -
scconds. On the other hand, polycrystalline :
beryllium tended to exhibit much higher rig, el
times [22, 23]. Longer rise times have also
been observed in a variety of other polycrys.
talline materials. For example, Grine [24)
found increasing precursor rise times with the |
increase in transit distance of a shock wave |
through polycrystalline granite. At 127 mp,
from the surface, the rise time had increaseq '
from zero (at surface) to around 1 gs.

Barker et al. [4] found some interesting
differences upon shock loading polycrystallj.
ne aluminum (average grain diameter of 1
mm). The rise times observed by means of
quartz gages were about 0.08 us, while laser
interferometry provided durations of about
0.015 ps. They said that the difference could
be explained by the difference between the
active diameters of the quartz gage (12.7 mm)
and of the interferometer light spot (0.1 mm),
Also, the interferometer results suffered from
non-repeatability and Barker et al [4)
suggested that it could be due either to
experimental conditions or intrinsic
characteristics of the aluminum. Gillis et al.
[25], upon shock-loading polycrystalline
tantalum, found a rise time of 0.05 us after
making necessary corrections for projectile
tilt. Shock-loaded iron [26] showed elastic
rise Limes varying between 0.028 and 0.088
us; Rohde [9] found a rise time of around
0.12 us for iron shock-loaded at room tempe-
rature.

(b) Rise times increase with transit distan-
ces inside the metal. Recently, Arvidsson et
al. [15] have shown that, for polycrystalline
aluminum, the rise time increases with pene-
tration within the target. Grine [24], as men-
tioned earlier, observed the same effect in
granite.

(c) In polycrystalline metals, rise times are
affected by grain size and texture. Jones and
Holland [26] found substantial variations in
the elastic rise times of shock-loaded iron.
They showed a tendency to increase with
grain size, all other parameters being
maintained constant. Stevens and Pope [23]
submitted polycrystalline beryllium samples
of four different textures to plate impact ex-
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- periments. They found that, as the texture in-



creased, the rise time of the elastic precursor
decreased. The articles above, because of their
relevance to the present study, will be discus-
sed later in greater detail.

While differences in the rise times of elastic
waves exist, and in spite of the fact that there
are — as shown above — some definite tenden-
cies in these differences, there are only short,
speculatory statements on them in the litera-
ture (with the exception of Arvidsson et al.
[15]). The major concern of previous investi-
gations was usually precursor attenuation and
relaxation. Jones and Holland [26] attributed
the differences to impedance mismatches
between the adjacent grains, resulting in rever-
berations of the disturbance. Jones and Mote
[16] interpreted the differences between
copper single crystals and polycrystals as
being due to lower initial dislocation density
in the former. Gillis et al. [25] explained the
finite rise time in polycrystalline tantalum as
being due to the pre-existing dislocations.
Stevens and Pope [23] attributed the ramping
rise time in untextured polycrystalline
beryllium to unrelaxed thermal stresses- In
textured beryllium, the crystallographic align-
ment would permit relaxation of the micro-
stresses and the precursor rise time would
decrease. Arvidsson et al. [15] concluded that
the increase in elastic rise times with distance
was due to viscosity effects.

It can be seen from the above thal there is
no general agreement on the reasons for a
finite rise time of elastic precursor waves. For
this reason it was thought worthwhile to ana-
lyze the possible causes for this effect and to
present a model consistent with the results
reported in the literature and described above.

3. MODEL FOR RISE TIMES OF ELASTIC
PRECURSOR WAVE IN POLYCRYSTALLINE
METALS

An elastic precursor wave is schematically
represented in Fig. 1. It is, of course,
recognized that the uniaxial strain generates
a triaxial state of stress at the wave [14].
However, for reasons of simplicity only the
Normal component in the wave propagation
direction is considered. o and Ao are the peak
amplitude and stress decay, respectively. They
hflvc been interpreted successfully in terms of
dislocation dynamics [2 - 14]. At is the rise
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Fig. 1. Schematic representation of elastic precursor

wave.

time of the elastic wave. A complete model
for the elastic precursor wave would neces-
sarily have Lo incorporate the o decay and Ao.
These parts will be intentionally left out and
only the precursor rise will be analyzed. In
polycrystalline metals there is a scrics of
effects that may affect the rise time of the
wave. Assuming a perfectly parallel projecti-
le-target impact, or a perfectly simultaneous
explosive detonation at the target surface, the
most important effccts capable of introducing
irregularities into the clastic precursor waves
are:

(a) Velocity anisotropy. The wave velocity
is a function of the direction of propagation
in a crystal. For this rcason the mean velocity
of a wave traveling along a straight path will
depend upon the orientation of the grains.
Consequently, waves traveling along straight
paths where diffcrent crystallographic
densities occur will have different mean
velocities. A similar treatment was previously
presented by Meyers and Carvalho [27] for
shock waves.

(b) Scattering by grain boundaries. Grain
boundaries should act as barriers to a
propagating elastic wave, because they are
two-dimensional inhomogeneities, with
atomic arrangement and density different
from the matrix.

(c) Wave deflections at grain boundaries
due to anisotropy of adjacent grains. Adjacent
grains with different orientations may be
visualized as different materials due to elastic
anisotropy. So, both reflection and refraction
take place at the grain boundaries duc to the




10

boundary conditions of constancy in pressure
and strain compalibility at the interface [28).
Refraction will change the orientation of Lhe
transmilled wave, resulting in a non-linear
path.

(d) Scallering due to mode conversion

~ (from longitudinal to shear waves, and vice-
versa), when a wave traverses different grains.
This is related to item (c) and will be discus-
sed later. Delaying effects are introduced be-
cause shear waves propagale al velocitlies
much lower than longitudinal waves.

(e) Initial rise Lime of wave at instant of
impact. The projectile undergoes deccelera-
tion upon impacting the target. The elastic

. precursor wave has an initial rise Lime that is
different from zero.

(f) Dislocation dynamical effects. Finite
rise times have been atlributed to these
effects. _ ) .

Of the above effects, only (e) and (f) in-
crease the actual rise time of Lhe wave. The

"olher effects tend to produce an irregular,
wavy wave front. A gage with an active area
larger than the material grain size will present
a wave profile that incorporates both the
aclual rise time of Lthe wave and irrcgularities
producing waviness in the elastic front. Such
is the case of quartz and manganin gages. On
the other hand, laser interferometry should
give a more realislic profile of Lthe actual rise
times. A model that would explain the rise
Limes observed in quarlz gages should incor-
porate time delays due to effects(a) to (f)

~ above. So:
Al = Al + Al + AL+ Aty + AL+ AL, (1)

where the subscripts refer Lo the letter of the
corresponding effect in Lhe above listing. The
various time delays will be estimated and their
sum will be compared with the resulls obtain-
ed by Jones and Holland [26]. This work was
chosen because it allows comparison when
one parameler —- the average grain diameler —
was varied, the others rémaining constant.
Also, Jones and Holland [26] used a disc-
shaped quartz transducer with an aclive dia-
meler of 21.75 mm, when the grain sizes were
70 X 1072 mm or smaller. Iron samples with
thickness of 19.05 mm and average grain dia-
meters ranging from 9 to 70.3 yum were used

by them.

3.1 Velocity anisotropy

The clastic wave velocitics along straighg
paths, as well as the probabilities of the diffe.
rent paths, can be calculated. From this com.
bined information A, can be estimated. This
calculation procedure, applied to Jones ang
lHolland’s [26] conditions, is shown next,

The longitudinal components of elastjc
waves along Lhe three crystallographic orien.
tations (100), (110), and (111) can be calcy.
lated in terms of the elastic stiffnesses C,,,
C2. C44 and the material density; expressions
are given by Ghalak and Kothary [29] (there
are misprints in the original version). The
correct forms of the expressions are:

/C
Uioor = 7'1 ; (2)

_ \/Cn + Cyp + 2Cy,

Uno 2 (3)
C,, +2C,,+4C
Ui =\/ L 3p12 e (4)

For iron, the values of the elastic stiffnesses
are, al 300 K [30]):.

Cy, = 243.1 GPa
C,, = 138.1 GPa
Cy = 121.9 GPa.
The densily of iron is 7.860 at 300‘"K, so:
Uioo) = 5.56 X 10 mm/s
Uji0) = 6.31 X 10° mm/s
Uy = 6.53 X 10 mm/s.

An elastic wave profile can be estimated at
any position inside the polycrystalline iron
sample knowing Lhe grain size and texture.
The calculations can be conducted in various
degrees of rigorousness. An approximate
profile that does not require extensive mathe-
matical manipulation can be produced by
making some simplifying assumptions and
specifying some parameters:

(a) All grains are cubes with sides, L, as
shown in Fig. 2. For the three grain sizes
considered, cubes with the following sides L
will be assumed: 9, 34, and 70.3 pym. The
longitudinal elastic wave front is horizontal
and travels from Lop to bottom,

(b) It is assumed that there are only three
verlical orientations for the grains: (100),




&

s ..

e

TABLE 1

Number of grains and transit times for the three different grain sizes
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Transit time per grain

Cubic grain Number of
size, L grains, n - ;

(pm) grain type_ 1, {y grain type 2, {5

. (us x 1077) (us x 1077)

9 2116 1.62 1.40

34 560 6.12 5.30

70.3 270 12.64 10.95
(110) and (111). These are the sole orienta- L L
tions along which purely longitudinal waves Ly = —; and t; = b‘z‘ (5)

exist [29]. It will also be assumed that the

" material exhibits the lcast possible texturing.

To make the two above assumptions compati-
ble the grains have to be present in propor-
tion to the multiplicity factor of their vertical

" orientation: these are 6, 12 and 8 for the

(100), (110) and (111) orientations, respecti-

“vely. Consequently, the probabilities for the

orientation of each grain are:

Puooy = 0.461
Paroy = 0.231
Paap = 0.308.

(c) Since the velocities of the waves along
the (110) and (111) orientations are very
close, an average of the two is taken and their
probabilities added up. This simplification
introduces enormous reductions in the
computer processing times. So, two orienta-
tions, (100), and (110) + (111), are consider-
ed. They are coded 1 and 2, respectively, in
the expressions that follow. '

(d) The wave profile will be evaluated after
it penetrated 19.05 mm into the iron sample.
Table 1 shows the number of grains and

transit times for the three different grain
sizes. In order to obtain the probability dis-
tribution function of the transit times after a
penetration of 19.05 mm has been reached,

_ one can state the problem statistically as:
" what is the probability distribution function

of n indistinguishable events 1 and 2, with
probabilities p, and p, and values t; and (;?
The number of cubes that the wave would
have to traverse, in its vertical path, is n; p
and p, are 0.461 to 0.539, respectively, and
are the probabilities previously referred to; ¢
and t, are Lhe transit times for the cubes of
two orientations. They are obtained by:

where L has three possible values (Table 1).
One has to determine the number of possible

. configurations, C, of m, events of type 1 and

n, events of type 2 (n, + nz = n):

C= n'! : (6)
n 'ny!

The probability, p, of cach outcome is:

p=py X Pz . (7
The total probability, P, of each outcome is:

P = pC. (8)
One shou!d expect that:

P =1. (9
The transit time, T, of each outcome is:

(10)

T = nyty + nyty.

A plot of T vs. P provide$ the distribution of
transit times at a penetration distance of
19.05 mm.

Expressions (6), (7), (8) and (10) were fed
into an IBM 1130 computer in the form of an
especially prepared program. Due to the
computer limitations — it only operates with
numbers ranging from 10 3 to 10% — the
logarithmic form of eqn. (8) was used and
values of P lower than 10" % were assumed
zero. This only produced very small errors,
as shown in Table 2. The summation of total
probabilities should be 1, (eqn. 9) if no value
of P was neglected. A plotter expressed
graphically the computer results.

Figures 3, 4 and 5 show the T vs. P plots
for the grain sizes of 70.3, 34, and 9 pm, res-
pectively. The values of P were grouped in
the same time intervals of 2.5 X 1073 ps in
the three Figures. Therefore, the three distri-
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TABLE 2
Summation cf total probabilities and standard devia-
tions of time

L zp Std. deviation At,
(um) (us) (us)

9 0.9839 0.005 69 0.02276
34 0.998 4 0.01002 0.040 08
70.3 0.9995 0.014 25 0.057 00

V77 77 7 7 7777
J AL LT 7 777 77
L 7 7 7 77 777 7
L [ 7 7 7 7 77 7 7
L 7T 77 7 7 77 77
[ T 7 7 7 7 7777

L L 7 7 7 77 7

[ 7 7 777 7

yAav4
LLL L 77777

Figure 2. Simplified configuration for the grains.
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Figure 3. Distribution of transit times due to velocity
anisotropy of the wave, after penetration of 19.05
mm into sample with grain size of 70.3 um, as obtain-
ed from computer calculations.
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Figure 4. Distribution of transit times due to velocity
anisotropy of the wave, after penetration of 19.05
mm into sample with grain size of 34 yum, as obtained
from computer calculations.

bution functions can be directly compared.
Their mean is the same: 3.16 ps. However,
as the grain size increases (and, consequently,
the number of grains decreases) the distribu-
tion broadens out. The standard deviations
for the three distributions are given in Table
2. One can infer, from the plots of Figs. 3, 4
and 5, that the elastic wave progresses into
the material not as a planar front, but with
irregularities that become increasingly pro-
nounced; therefore, the ‘“wavy wave’’ name.
Four standard deviations were thought to
be a good measure of At, because around 95%
(if one assumes a normal distribution) of the
transit times are within this interval in the
distributions of Figs. 3 - 5. The values are
presented in Table 2.

3.2 Scattering by grain boundaries

Grain boundaries can be visualized, for the
purpose of wave propagation as inhomogenei-
ties having a few atomic layers of thickness.
Because they scatter the wave, they should
contribute to its attenuation. Their effect on
the rise time, At,, can be best inferred from
the work of Stevens and Pope [23]. As

--.
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Fig. 5. Distribution of transit times due to velocity
anisotropy of the wave, after penctration of 19.05
mm into sample with grain size of 9 ym, as obtained
from computer calculations.

described earlier, they shock-loaded polycrys-
talline beryllium samples with different basal
plane texture factors (1 R - 8 R, where R is
the basal plane density for the random
sample). All samples had grains not too
different from equiaxial, and of approximate-
ly the same size. However, changes in pulse
durations were observed; these changes
cannot be due to grain-boundary scattering.
Morcover, the 5 R and 8 R samples had an
elastic precursor rise time of 4 X 1072 ps.

So, the times rises introduced by the grain
boundaries should be lower than 4 X 1073 ps.
This number could be taken as a rough esti-
mate of At, for iron, since actual calculations
could be extremely complex.

3.3 Deflections al grain boundaries due lo-
anisotropy of adjacenl grains

The elastic wave in parallel plate impact
experiments is initially entirely longitudinal
and travels in a direction perpendicular to the
impact surface. However, as it encounters
boundaries of different grains, it is reflected
and refracted, and generates reflected and
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Fig. 6. Reflected and refracted waves when longitu-
dinal wave OA encounters boundary between media
A and B with different wave impedances.

refracted shear components. This is due to
the fact that different grain orientations have
different acoustic impedances or resistances
(defined as the product of the wave velocity
by the density).

Again, some simplifying assumptions are
necessary in order to determine the time rise,
At,. Figure 6 shows a longitudinal wave, AO,
inciding on a boundary separating materials
wilh different acoustic impedances. It
generates a transmitted longitudinal wave,
OE, and shcar wave, OF, and a reflected lon-
gitudinal wave, OC, and shear wave, OD. So,
the wave OA generates four waves. The lon-
gitudinal and shear velocities are indicated by
U and U, respectively. The angles and ampli-
tudes depend upon the acoustic impedances
of the two media, the wave velocities, the
initial incidence angle a, and the amplitude of
AO. The calculations are described by Kolsky
[31], Rinchart [28] and Wasley [41]. In the
following calculations the iron sample will be
assumed, as in Section 3.1, to be composed of
grains with two orientations: (100) and
(110) + (111). For simplicity, these grains
will be assumed isotropic (but with different
acoustic impedances) so that longitudinal
and. shear waves can travel in them along any
direction. Actually, perfectly longitudinal and -
shear waves only propagate along certain
orientations within a crystal (32]. Along all
other orientations, only quasi-longitudinal
and quasi-shear waves can exist [33]. The an-
gles of the transmitted and reflected waves
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Fig. 7. Reflected and refracted waves when longitu-
dinal wave OA encounters boundary at 45°. (a) Wave
going from (100) into (110) + (111). (b) Wave going
from (110) + (111) into ¢100).

with the boundary normal are given by [28,
31}:

sin a =smﬁ ___smn =sm'E (11)

Uj U's Us Ug

If the grain configuration of Fig. 2 were
assumed, all angles would be equal to 90° and
the wave would maintain a straight path.
However, this approximation cannot be made
here. The grains will be assumed to the poly-
hedra of equal size; Rhines et al. [34] descri-
be the ideal grain as a tetrakaidecahedron. For
such a situation, a longitudinal wave will in-
tercept boundaries at angles, e, varying from 0
to 90°. It can be clearly seen that the trans-
mitted longitudinal wave will continuously
be deflected from its straight path. These
deflections depend on the angle, a. They vary
from O (for a = 0) to a maximum value, for

a = 90°. Therefore, the path length of the
longitudinal wave will be increased from it
minimum value of 19.5 mm. The complica-
tions of a rigorous calculation are enormous,
and it suffices in this estimate to consider
average deflections. An.average a angle of
45° is assumed, and two situations are consi-
dered: the wave crossing the boundary from
(100) to (110) +(111) and the wave going
from (110) +(111) to (100). The results are
presented in Fig. 7(a) and (b), respectively,
In Fig. 7(a) the longitudinal wave is deflect.
ed to the left by 9.75°; in Fig. 7(b), it is
deflected by 7.24° to the right. The trans.
mitted shear wave and reflected waves will
be treated in Section 3.4 and are of no con-
cern here.

At this point a new simplifying assumption
is introduced. It is assumed that an average
wave is successively deflected to right and
left, so that the wave follows, macroscopical-
ly, a linear path. The microscopic deflections
(having the mean amplitude equal to the
mean grain diameter) to right and left are
assumed to be the same and equal to the
average of the deflections shown in Fig. 7. So,
the mean deflection at each boundary is 8.5°,
If the path is assumed to be macroscopically
lincar and vertical, this corresponds, micros-
copically, to a wave fluctuation of 4.25°
around a vertical straight line. The calculation
of this incrcased path length is straight-
forward. If the straight path length is L, then:

_ L

' cos 4.25°
For Jones and Holland’s [26] experimental
situation, L is 19.05 mm and L, would be
19.103 mm. So, there is a mean path increase
of 0.053 mm associated with deflections of
the longitudinal waves at grain boundaries
due to grain anisotropy. Non-lincarity of the
wave paths will increase the waviness of the
wave beyond the waviness strictly due to ani-
sotropy of velocities. The minimum path
length being 19.05 mm and the mean 19.103
mm, there will also be portions of the wave
that will have a longer path length. An
interval of twice the 0.053 mm is a first esti-
mate of the range of path lengths encompas-
sing the majority of situations. By dividing
the value of 0.106 mm by the mean velocity
of the wave, one obtains the time of 0.017 6
us. This time represents the difference in wave
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TABLE 3 .

Relative amplitudes (amplitude of 'wave divided by
amplitude of incident wave OA) of transmitted and
reflected waves

Wave From (100) to From (110) + (111)

(110) + (111) to (100)
0OC/OA 0.41 —0.30
OD/OA 0.27 0.20
OE/OA 1.17 1.22
: OF/OA —0.30 0.09

T W et

arrival times at the quartz gage due to deflec-
tions at grain boundaries. It is, therefore, an
estimate of At,. So, At = 0.017 6 ps. This va-
lue should be the same for all grain sizes.

3.4 Scattering due to mode conversion (from
longitudinal to shear waves, and vice versa) at
grain boundaries

Figure 6 shows how a longitudinal wave ge-
nerates two shear and two longitudinal waves.
The oricntations of these waves are shown in
Fig. 7. The assumptions made in Section 3.3
are maintained here. The orientations of the
transmitted and reflected shear waves are ob-

‘ tained by means of eqn. (11), using the shear

wave velocities calculated from Ghatak and
Kothari [29]. The following velocilies were

obtained:

Ujooy = 3.94 X 10° mm/s

Ujioy = 3.26 X 10° mm/s (average of two
' modes)

(]('"1) =3.10 X 106 mm/s.

As with the longitudinal velocities, the orienta-
tions (110) and (111) are grouped and their
average shear velocity is taken. So:

U/ =3.94 x 10® mm/s
U, =3.18 X 10° mm/s.

The amplitudes of the reflected and transmit-
ted waves have to be calculated in order to
verify whether they can affect the rise time of
the elastic precursor waves. The amplitudes
can be calculated [28, 31, 41], and their ratio
.lO the amplitude of the incident wave is given
In Table 3, for a 45° incidence. The minus sign
ff’r the longitudinal wave means that it is ten-
S'}c; for the shear wave, it represents particle
displacement in a direction opposite to the di-
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rection providing a positive sign. It can be
seen that the refracted longitudinal wave
carries most of the energy for both situations.
In one case the reflected longitudinal wave
is tensile and in the other it is positive: having
approximately the same relative amplitude
and propagaling at approximately 90° to the
primary propagation direction, they will, in
the average, annihilate each other. Because of
the assumptions, or the nature of the equa-
tions used, the energy is apparently not con-
served at the boundary. So the relative values
of Lhe ratios and not their absolute values
should be considered. Of course, the ratios
change wilh the angle of incidence, a; but, as
in the preceding Section, 45° is taken as a
good overall value. Because their velocily is
only around 2/3 of the longitudinal waves,
the shear waves will trail far behind the elastic
wave front and will therefore not affect the
rise time of the wave. One may argue that OF
(Fig. 7) might reconvert to a longitudinal
wave in the next grain boundary. The scalter-
ing of shear waves at grain boundarics is similar
to the one by longitudinal waves (Fig. 6). But
the amplitude of a longitudinal wave resulting
from a transmitted shear wave would be negli-
gible. An idea of its relalive amplitude can be
obtained by the square of the relative ampli-
tude of OF. The reflected shear and longitu-
dinal waves arc also of no great concern since
they are moving away from the macroscopic
propagation direction. Atp can be taken as
zero. Papadakis [35] presents an analysis of
the effects of polycrystallinity on ultrasonic
waves and says that attenuation is determined
almost entirely by grain scattering. It is inter-
esting that, to the author’s knowledge, grain
scattering has not at all been involved in the
interpretation of the attenuation of elastic
precursor waves in polycrystalline melals.
From the above analysis one can sece that
polycrystallinity is responsible for wave scat-
tering and, conséquently, attenuation, but
that the rise time should not be affected be-
cause of the lower amplitudes and velocities
of reflected and refracted shear waves.

3.5 Initial rise time of wave at instant of im-

pact
The elastic wave has an intrinsic rise time

due to the finite velocity of the projectile (in
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the case of impact) or the rate of pressure
increase due to detonation (in the case of
shocking by direct contact with the explosi-
ve). This intrinsic time rise is due to the fact
that the rate of application of pressure has a
finite value. After the elastic pulse penetra-
tes into the metal, its rise time would steadily
increase if the higher pressure pulses would
travel at lower velocities than lower velocity
ones. Such is the case for the plastic waves in
uniaxial stress experiments (IHHopkinson bars)
and the time rise increases with distance
[41]. However, for uniaxial strain
experiments, the Hugoniot P-V/V, curve is
concave upwards [36] (on loading) even
below the Hugoniot elastic limit, showing
that the pressure dependence of velocity will
not result in rise time increases. The rise times
in single crystals with low defect densities give
a good indication of the above effects. Quartz
transducers indicate that rise times are usually
0.01 us or lower for single crystals [16, 18 -
21]. Laser interferometer measurements [42]
suggest that the rise times are even lower
(about 1073 us). No experiments have been
conducted, to the author’s knowledge, on
iron single crystals. For this reason, At, has
to be estimated on the basis of the response

. of other materials.

3.6 Dislocation dynamical effects

The elastic wave rise time has been attribut-
ed to dislocation effects by Gillis and loge
[25]. Dislocations are held responsible for
the pulse attenuation and yield point forma-
tion [2, 4, 6,9 - 13]. Undoubtedly, disloca-
tions will, if in sufficient concentration, affect
the rise time of -the wave. This has, indeed,
been proven by Jones and Mote [16]. While
annealed single crystals exhibited short rise
times (~0.01 ps), predeformation increased
this value considerably. The effect of disloca-
tion concentration on the pulse rise would
require experimentation to be quantified.
The intrinsically generated time rise (At,) and
the one due to the existence of dislocations
(Aty) are the probable causes for the time
rises (~0.005 ps) observed by laser interferome-
try [36] in annealed single crystals. Since
these effects cannot be experimentally
separated, it will be assumed that At, + At, =
0.005 ps. 1t is considered, of course, that the
material is fully annealed; this is, indeed, the
case of Jones and Holland’s [26] iron samples.

TABLE 4
Calculated and observed rise times of elastic precur;
wave -

Average grain Rise times (us)

?::;eter Calculated Observed
(This model) (Jones and
Holland [26
9 0.0494 0.028
30 . 0.0667 0.074
70.3 0.083 6 0.088

3.7 Comparison of model with Jones and
Holland’s [26] results

Among all rise times estimated or calculat
ed in the preceding Sections, only At, was
considered as dependent upon grain size.
Table 4 shows the total rise times, At, for
grain sizes of 9, 30 and 70.3 yum. These rise
times were obtained using eqn. (1) and value:
estimated or calculated in Sections 3.1 - 3.6.

At this point it is worth presenting the re-
sults of Jones and Holland [26], as well as
succinctly describing their experimental tech-
niques. Explosively generated plane shock
waves were passed through disc-shaped
specimens (diameter: 62 mm, thickness:
19.05 mm) having parallel faces. The wave
penetrated into the disc along one of its
faces; a quartz gage was placed in contact
with the other face and produced, with the
aid of appropriate transducers, a continuous
stress—time profile of the elastic—plastic wave.
A more detailed description of the experimen
tal setup and technique is provided elsewhere
[37]. Characteristically, the wave consisted o
an elastic precursor followed by a trailing
plastic front and phase-transition wave. The
shock amplitude of the plane wave was about
22 X 10® N/mm?2. Prior to shocking, the iron
discs (0.20% C, 0.85% Mn, 0.26% Si, 0.12%
Cu and traces of other elements) were heat
treated at temperatures between 885 and
1300 °C to yield the desired grain sizes. The
average grain diameters ranged from 9.0 to
70.3 um and no reference is made to textur-
ing . Due to the annealing temperature one
can infer that the grains were equiaxed. How-
ever, the possibility of recrystallization and
grain growth textures cannot be discarded
[38]. Among other parameters of the wave,
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the elastic wave-front rise times were deter-
mined by Jones and Holland [26]. The rise
times of the elastic waves were obtained. from
the stress-time plots, at the dynamic yield
stress. This was defined by the intersection of
extensions of straight lines coinciding with
the leading elastic wave and Lhe transilion
region preceding the slower platic wavelront,
for the 9 um condition. Whenever a yield point
was formed (all other conditions) the pecak
was taken as the rise time. This rise time mea-
sures the interval between the instant when
the first part of the wave reaches the quartz
gage and the instant when the whole wave
has reached it; at this moment the signal has
reached its highest value for the elastic wave.
The quartz gage has an active surface area
orders of magnitude higher than the mean
surface of the grains in contact with it. Hence,
the rise time measured by it incorporates both
the local rise time of the wave and the
waviness due to different arrival times in
different grains. So, it is the experimental
parameter equivalent to At obtained from
egn. (1).

Jones and Holland's [26] rise times are also
shown in Table 4 (they are listed in Table 4,
p. 1042, of that reference), and it can be
clearly scen that the agreement between
calculated and experimental data is good.
Figure 8 shows a graphic representation of the
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data. For simplicity, it is assumed that for
infinitely small.grain size, the malerial is iso-
tropic and the wave retains its planarity and
steepness of elastic front. It can be seen that
the rise times increase with increasing grain

size.

4, CONCLUSIONS

In spite of the fact that considerable effort
has been devoted in the past towards under-
standing the attenuation and relaxation of the
elastic precursor wave in shock loading experi-
ments, its rise time has not been analyzed so
thoroughly. This study shows that there are
distinct differences in the rise times of
different elastic waves, and that these differ-
ences appear to follow certain trends. The rise-
times of single crystals are substantially lower
than polycrystals; they increase with transit
distance inside the metal; in polycrystalline
metals they are affected by grain size and
texture.

A model for the elastic front is presented
consistent with the risc time differehces
reported in the literature. The possible causes
for the increase in actual risc time and genera-
tion of irrcgularities in the wave front were
analyzed, and the following effects were con-
sidered: (a) anisolropy of wave velocity, (b)
scattering by grain boundaries, (c) wave
deflections at grain boundaries due to aniso-
tropy of adjacent grains, (d) scattering due to

“mode conversion, (e) initial rise time of wave,

and ([) dislocation dynamical effect. The
different rise times were calculated or estimat-
ed, and a total rise time was obtained. The
model was applicd to the experimental condi-
tions of Jones and Holland [26]. Calculations
were made for three grain sizes, and it can be
seen from Fig. 8 that a good agreement was
obtained. Considering all the simplifying
assumptions of the model and uncontrollable
experimental variables (texture, quartz gage
responsc, etc.), a satisfactory correlation was
obtained. As the experiments, the model
predicts increasing rise times with increasing
grain size.
Although the calculations were not
performed, the model shows qualitative agree-
ment with the other results presented in the
literature. It predicts much lower risc times
for single crystals than for polycrystals, since
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the terms At,, At,, At. would vanish for the
former ones. This is confirmed by the experi-
mental measurements on single crystals [16 -
21, 36] and polycrystals [4, 16, 22 - 26].

If the texture of the material is pronounced,
the term At, would become reduced, because
one of the orientation probabilities would
dominate. Also, At, would decrease, because
the linearity of path would become more
pronounced. Consequently, the rise time
would be reduced; this is exactly what is
reported by Stevens and Pope [23]. In their
experiments on beryllium, the texture was
varied without substantially affecting the
grain size and shape. It is easy to show that
At increases with propagating distance, corro-
borating Dick et al.’s [9] results, because the
terms At, - At; are dependent upon penetra-
tion distance.

Finally, it is suggested that the proposed
model can be applied, with the appropriate
modifications, to surface ultrasonic waves in
polycrystalline metals. It has been shown that
both texture [39] and grain size [40] affect
Raleigh waves in metals. The model herein
presented could present a theoretical counter-
part to the experiments (especially the effect
of texture [39]).
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