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Abstract

Four principal factors contribute to grain-boundary strengthening: (a) the grain boundaries act as barriers to plastic flow; (b)
the grain boundaries act as dislocation sources; (c) elastic anisotropy causes additional stresses in grain-boundary surroundings;
(d) multislip is activated in the grain-boundary regions, whereas grain interiors are initially dominated by single slip, if properly
oriented. As a result, the regions adjoining grain boundaries harden at a rate much higher than grain interiors. A phenomenolog-
ical constitutive equation predicting the effect of grain size on the yield stress of metals is discussed and extended to the
nanocrystalline regime. At large grain sizes, it has the Hall-Petch form, and in the nanocrystalline domain the slope gradually
decreases until it asymptotically approaches the flow stress of the grain boundaries. The material is envisaged as a composite,
comprised of the grain interior, with flow stress oy, and grain boundary work-hardened layer, with flow stress o;gp. The
predictions of this model are compared with experimental measurements over the mono, micro, and nanocrystalline domains.
Computational predictions are made of plastic flow as a function of grain size incorporating differences of dislocation
accumulation rate in grain-boundary regions and grain interiors. The material is modeled as a monocrystalline core surrounded
by a mantle (grain-boundary region) with a high work hardening rate response. This is the first computational plasticity
calculation that accounts for grain size effects in a physically-based manner. © 2001 Elsevier Science B.V. All rights reserved.

1. Introduction isotropy of the grains. Nevertheless, pile-ups are still
widely recognized as the dominating effect.

The grain-size dependence of yield stress in metals The Hall-Petch relationship has recently come under
has been represented as a D~ ' relationship since the close scrutiny in the context of nanocrystalline materi-
pioneering work of Hall [1] and Petch [2]. The term als, pioneered by Gleiter and co-workers [9,10]. Weert-
Hall-Petch was introduced by Conrad [3] as a tribute man and co-workers [11—14] have investigated the

to these researchers. The original explanation for this
effect, envisaged by Hall and Petch, was that pile-ups
formed at grain boundaries, and required a critical
stress to break through them. The important contribu-
tions by Ashby [4], Hirth [5], and Thompson [6]
strengthened the argument that causes other than pile-
ups were responsible for the grain size effects. Clear
evidence for the formation of a layer of high dislocation
dens%ty e dlrect' vicinity of the grain boundages, Koch and co-workers [15-19] studied nanocrystalline
starting at an applied stress below the global yield .
stress, is the transmission electron microscopy by Murr 1ron, a chused gffect was a.l so undertaken to Temons
and Hecker [7] (especially, Fig. 2). Meyers and Ash- ﬂaw§ (voids, mlcrocracks, 1n§omplete t?oundarles of
worth [8] proposed a mechanism based on elastic an- particles, etc.) in order to obtain more reliable mechan-
ical strength under both compression and tension. In
* Corresponding author. Tel: + 1-858-5344719: fax: + 1-858- summary, the experimental results indicate that the
5345698, Hall-Petch slope in the nanocrystalline domain is
E-mail address: mameyers@mae.ucsd.edu (M.A. Meyers). lower than in the microcrystalline (conventional) range

effect of grain size, in the nanocrystalline domain, on
yield stress, in a systematic manner. Sample imperfec-
tions (voids, microcracks incomplete boundary of parti-
cles) masked many of the mechanical characteristics of
nanocrystalline materials in early work, and careful
processing and characterization has been needed to
eliminate (or, at least, mitigate) these effects. A recent
overview [14] presents the current thinking on this.
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of grain sizes. In some cases, a zero or even negative
Hall-Petch slope has been reported [20]; however, this
may well be an artifact of sample preparation.

2. Elastic anisotropy

A polycrystalline aggregate, upon being subjected to
external tractions, develops a highly inhomogeneous
state of internal stresses, due to the elastic anisotropy of
the individual grains. Such inhomogeneous state of
stress can only be avoided if the anisotropy ratio is one.
For instance, for iron and copper, one has:

Fe Cu

E,po =125 GPa E,po =67 GPa
E ;o =200 GPa E,;, =130 GPa
E,;; =272 GPa E,;; = 190 GPa

Fig. 1 shows a polycrystalline aggregate (Cu) sub-
jected to compressive tractions through the uniform
displacement of the end platens. The computational
approach is described in Section 5.1. The average im-
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posed stress, obtained by dividing the strain (set equal
to 0.000225) by the polycrystalline Young’s modulus
(120 GPa), is equal to 27.9 MPa. The arrangement of
grains is shown in Fig. 1(a). Three types of grains, with
orientations [100], [110], and [111], are considered. They
are white, gray, and black, respectively, in Fig. 1(a).
The material is not truly anisotropic, because the indi-
vidual grains are taken to be isotropic (but with differ-
ent Young moduli). Figs. 1(b) and (c) show the
principal stresses o, and ©,, and their variation through
the section marked A—A. As expected, o, fluctuates
around zero, while o, varies between — 20 and — 55
MPa. The maximum shear stress is shown in Fig. 1(d).
It varies between 13 and 30 MPa. The shear stresses
vary significantly throughout the grains.

3. Phenomenological model

A mechanism for the effect of grain size on the yield
stress is presented here. It is essentially an extension of
the model proposed by Meyers and Ashworth (MA) [8]
to the nanocrystalline regime. This model does not
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Fig. 1. Elastic stresses in polycrystalline copper loaded elastically; (a) grain configuration; three grain orientations: white [100], gray [110], and
black [111]; (b) maximum principal stress (o,); (c) minimum principal stress (o,); (d) maximum shear stress.
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Fig. 2. (a) Activation of slip on second system in the vicinity of
boundaries due to compatibility stresses for polycrystalline aggregate;
(b) polycrystalline aggregate viewed as composite material composed
of bulk and grain-boundary material, with flow stresses 6 and 6¢p,
respectively; (c) idealized spherical grain of diameter D with grain-
boundary layer of thickness 7; sections S;, S,, Ss, S,, and Ss, reveal
different proportions between the areas of the bulk and grain-
boundary material (from Meyers and Ashworth [8]).

require pile-ups at grain boundaries. It is based on
earlier ideas advanced by Ashby [4], Hirth [5], and
Thompson [6]. Conceptually, it is supported by and
parallel to ideas developed by Margolin [21], who
emphasizes the importance of grain boundaries in
generating a work-hardened layer. The concept of a
work-hardened grain-boundary layer, essential to the
MA model, is modeled computationally, for different
grain sizes, in Section 5.2; it will be shown that similar
predictions  are  obtained. The compatibility
requirements at the grain boundaries create additional
stresses, 1;. Meyers and Ashworth [8] found for nickel
(by FEM calculations on a bicrystal) that

1 =1.3704p (1)

where G,p is the applied normal stress. In a uniform,

homogeneous natural, T = /2. Thus, the shear stress at

the interface is between two and three times the
maximum shear stress in a homogeneous/uniform
material. This is consistent with the result given in

Section 2 for copper. It is therefore logical to expect the

initiation of plastic flow to take place in the grain

boundary regions. Other factors that contribute to this:

1. Grain boundaries are sources of dislocations. This is
a well-known phenomenon; grain-boundary ledges
and grain-boundary dislocations can initiate plastic
deformation (e.g., Li and Chou [22], Murr [23],
Sutton and Balluffi [24]).

2. Grain boundaries segregate impurities and foreign
atoms and their mechanical properties differ from
the grain interiors.

3. Dislocations pile up at grain boundaries.

As a result, while the grain interiors can be consid-
ered to harden by the classic easy glide/linear harden-
ing/parabolic hardening sequence, the grain boundaries
show a much faster rise in dislocation density.

The MA model is presented here in a shortened
manner. As the applied stress increases, a work hard-
ened layer along the grain boundaries is formed. This is
eloquently illustrated by Murr and Hecker [7]. This
build-up of plastic deformation has also been recently
measured by Adams [25]. Once this work hardened
grain-boundary layer is formed, the stresses within the
polycrystalline aggregate homogenize. The flow stress
of the aggregate is obtained, in approximate fashion,
from:

oy, = Agop + Agp0orp 2)

Ap and Agg are the areal fractions of grain interior
and grain boundary, respectively. Fig. 2(b,c) shows an
idealized representation of the aggregate. Grains are
assumed to be spherical, with a diameter D; the grain
boundary layers are assumed to have a thickness ¢ (in
each grain). The diametric areal fractions are expressed
by:

1 1
1 n[D? — (D — 2t)?] 1 (D — 2t)?
Agy=— P Ag=r——— Q)
_ 2 s 2
1 nD 1 nD

Substituting Eq. (3) into Eq. (2):
oy=0p+Hom—op)tD ™' — 4o — o)’ D (4)

Different sections, marked S,, S,, S;, S,, and S5 in
Fig. 2(c), produce different areal fractions A, and Agp.
Meyers and Ashworth [8] estimated the mean values of

¢t and D, t and D, respectively. They are D =gD and
t=1.57t.
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Hence, it is more correct to use these values. The
ratio zD~' is approximately equal to 2tD~'. Eq. (4)
breaks down when D <2¢t. The Hall-Petch depen-
dency, universally obtained for large grain sizes, can be
inserted into Eq. (4) by establishing a functional depen-
dence of ¢ of the form:

t=kuaD'? )

The rationale for this relationship is the following.
There are two effects: (a) as the grain size is decreased,
the stress field fluctuations vary with D. This would
lead to a dependency ¢ = k,D; (b) the dislocation spac-
ing is unchanged and the dislocation interactions will
dictate a constancy in ¢; thus, a relationship ¢ = k,D°.
The geometric mean would be: (k,k,D)'?, or ky D2

Substituting Eq. (5) into a modified form of Eq. (4)
and taking the terms D and ¢ into account:

0y = 0p+ 8kya(dce — om)Dis 1
— 16k}4a(6168 — o)D" (6)

For large grain sizes (in the micrometer range) the
D~ term dominates and a Hall-Petch relationship is
obtained. The Hall-Petch slope, kyp, is equal to:

kyp = 8knia(drgp — Orp) (7

As the grain size is decreased, the D~ ! term becomes
progressively dominant; the o, versus D~ ' curve goes
through a maximum. This occurs at D, = (4ky4)*> For
values of D <D, it is assumed that the flow stress
reaches a plateau.

4. Comparison with experiments

The predictions of Eq. (6) are compared with the
most extensive experimental results available in the
literature, to the authors’ knowledge. Yield stresses for
nanocrystalline Fe and Cu, reported by Mallow and
Koch [17,18], and Weertman et al. [11-14], respec-
tively, are shown in Fig. 3. The experimental results in
the nanocrystalline range are complemented by Hall—
Petch slopes in the microcrystalline range. These slopes
are reported in the literature. For iron, experimental
results reported by Armstrong [26] were used. For
copper, experimental results by Feltham and Meakin
[27] and Andrade et al. [28] are used. There are other
experimental results in the literature, that fall in the
range reported in Fig. 3. For iron, Abrahamson [29]
carried out experiments in the lower range of the con-
ventional Hall-Petch and started to observe a devia-
tion from the accepted slope.

It is clear, for both Fe and Cu, that the o, versus
D~ ' relationship is not linear over the range millime-

ter—nanometer. The Hall-Petch line is an approxima-
tion that is effective in the mm-pum range. There is
strong evidence that the slope decreases and that the
curve asymptotically approaches a plateau when the
grain size is progressively reduced. Eq. (6) is successful
in representing the principal features experimentally
observed. Three parameters have to be established: oy,

Oige, and kya. O 1s the saturation stress and repre-

sents the flow stress of the work hardened grain-

boundary layer. It is taken as the maximum of the yield
stress. kya 1s obtained by conversion of kyp according
to Eq. (7). This ensures a good match between HP and

MA for large grain sizes. Table 1 shows the parameters

used in the calculation. The continuous curves in Fig. 3

represent the application of Eq. (6); a reasonable fit is

obtained and the principal features are captured. For
grain sizes below the maximum of the flow stress in the

MA equation, a straight horizontal line is taken; in this

regime, the grain boundaries (o;gp) dominate the

process.

There are many simplifications and assumptions in
this model. The most prominent are:

1. The work hardened layer ¢ is assumed to have a
grain size dependence of D~ "2 This assumption is
based on the o, versus D~ ' dependence.

2. The flow stress of this layer is constant. In reality, a
gradient of work hardening is expected.

3. The grain boundary flow stress reaches the satura-
tion value oy at an early level of global plastic
strain.

In spite of these drastic assumptions, a good fit is
obtained and it is felt that the model captures the key
physical features. It should be noted that Gertsman et
al. [30] obtained experimentally a similar decrease in the
Hall-Petch slope for copper, in the nanocrystalline
range. However, the yield stresses are significantly
lower than the latest results by Weertman et al. [13,14].
Fig. 3(b) also shows (A) earlier experimental data by
Nieman et al. [11]. Differences with more recent results
(Weertman et al. [14]) can be attributed to improved
processing methods. These results illustrate how much
processing can affect the strength of nanocrystalline
materials. These earlier results were not used in the
modeling effort.

5. Computational predictions
5.1. Description of code

The finite difference community has used Eulerian
methods for over 30 years to analyze problems with
explosive loading, but until comparatively recently, they
were too computationally demanding and inaccurate to
be attractive for solving problems in solid mechanics.
The calculations in this research were performed with
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Fig. 3. o, versus D~ '/ relationship for (a) iron and (b) copper; comparison of experimental results and predictions of Eq. (7).

Raven, an explicit, multi-material Eulerian program
developed by Benson for research in materials science
and manufacturing. It uses the van Leer MUSCL al-
gorithm [31] for the material transport while the La-
grangian part of the code follows the standard
formulation used in most explicit finite element codes.
A comprehensive review paper by Benson [32] discusses
the algorithms in greater detail.

5.2. Results of computations

For computational calculations, realistic polycrystals
were used. Four grain sizes were modeled: 100, 10, 1,
and 0.1 pm. The thickness of the grain-boundary layer,
t, was varied and the respective values used are: 3.75,
0.75, 0.15, and 0.03 pm. The material chosen for the

modeling effort is copper, because of the significant
amount of information on grain-size effects available
(see Fig. 3(b)). The microstructures, already divided
into grain interiors and grain-boundary layers, are
shown in Fig. 4. For the largest grain size modeled (100
um), the grain-boundary region is barely distinguish-
able, whereas for the smallest grain size (0.1 pm), the
grain-boundary region occupies a significant portion.

Table 1
Parameters used for MA model

o (MPa) o¢gp (MPa) ka (MPa m'?)  ky (m'?)

22x10-°
(1.6-2.4)x 105

Fe 100
Cu 25

2800
900

0.48
0.112-0.172
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Fig. 4

Fig. 6

Fig. 4. Simulated polycrystalline aggregate used in computations; (a) D = 100 pm, ¢ =3.75 um; (b) D =10 um, 1 =0.75 pm; (¢) D =1 pm, ¢ =0.15
pm; (d) D=0.1 pm, 7 =0.03 pm.

Fig. 6. The initial and final state with contours of the equivalent plastic strain for the microstructure with the 0.1 pm grain size. The contours
range from blue for no plastic strain to red for plastic strain levels greater than 1.0.
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Fig. 5. Stress—strain curve for monocrystalline copper representing
grain interior.
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Fig. 7. Calculated stress—strain curves for grain sizes ranging from
0.1 to 100 pm.

The different mechanical responses of the two regions
were also incorporated. The grain-boundary region
was considered to be highly work hardened, whereas
the grain interiors were modeled as monocrystals. At
the present stage, no attempt was made to incorpo-
rate elastic incompatibility stresses into the plasticity
analysis and the build-up of plastic deformation into
the model. The model has the capability of incorpo-
rating as many as fifteen different crystallographic di-
rections (manifested by different mechanical
responses). However, at the present stage all grain
interiors were assumed to have the same (monocrys-
talline) response; the same assumption was made for
the grain-boundary layers. The crystallographic orien-
tation and specimen dimensions have a profound ef-
fect on the mechanical response of monocrystals. The
response of annealed monocrystal is shown in Fig. 5.
The monocrystal data is based on experimental re-
sults reported by Diehl [33] and represents an aver-
age; a bilinear stress—strain response is assumed (Fig.
5) that captures both the easy glide and linear hard-
ening stages of work hardening. The work-hardened
grain-boundary region was assumed to respond as a
perfectly plastic material with a flow stress of 900
MPa (this value is identical to the one from Table 1).
These two stress—strain responses were incorporated

into the code Raven and calculations were success-
fully carried out. The results of one calculation for a
grain size of 0.1 um are shown in Fig. 6. The distor-
tion of the grains, as well as the plastic strain, i
visible. There are regions inside the grains where the
plastic strain exceeds 1. Shear localization can also be
seen. This occurs during global hardening. Indeed
shear localization is a prominent phenomenon in the
plastic deformation of nanocrystalline metals. Fig. 7
shows the computed stress-strain curves for the differ-
ent grain sizes (0.1, 1, 10, and 100 pm). The grain
size has a significant effect on the stress—strain re-
sponse. This response is very similar to the one exper-
imentally reported by Nieman et al. [11]. It is
interesting to notice that these computations predict
an ‘apparent’ elastic regime with a slope that is a
fraction of Young’s modulus. This is due to the inter-
action between the two regions. Thus, the lower elas-
tic moduli observed for nanocrystalline materials
could be attributed to these effects.

6. Conclusions

It is proposed that elastic anisotropic effects, grain
boundary sources, and the activation of two or more
slip systems in polycrystals are responsible for the
formation of a work hardened layer along the grain
boundaries, early in the microplastic region. This
grain boundary work-hardened layer becomes increas-
ingly important as the grain size is decreased. Poly-
crystals are modeled (both analytically and
computationally) as a composite of a work-hardened
boundary layer surrounding grain interiors comprised
of an annealed material having a essentially
monocrystalline response. The analytical predictions
using this framework are successfully extended from
the micro to the nanocrystalline domain and show a
good correlation with experimental results for copper
and iron. The decrease of the Hall-Petch slope in the
nanocrystalline domain is captured and corresponds
to a grain size for which the thickness of the work
hardened layer is equal to one half the grain diame-
ter. Computational predictions using the Eulerian
code Raven successfully produce stress—strain curves
of the polycrystalline aggregates and predict the cor-
rect trend in grain sizes.
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