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Abstract—It is proposed that the growth of lenticular martensite typically occurring in the Fe-Ni and
Fe-C systems takes place by the propagation of waves throughout the material. Two different types of
waves are postulated: longitudinal transformation waves and transverse transformation waves, propa-
gating at velocities of the order of elastic waves. The longitudinal transformation wave initiates the
transformation process, once an embryo has reached a critical size whereupon it becomes a nucleus; it
propagates radially along directions contained in the habit plane, forming the mid-rib. The martensitic
disc generated by the longitudinal transformation wave acts as a second-order nucleus for the transverse
transformation. The term ‘second-order nucleus’ is used to distinguish it from the ‘first-order nucleus’
that gives rise to the start of the transformation. The transverse transformation waves propagate perpen-
dicularly to the habit plane, starting at the mid-rib. Accordingly, different defect generation mechanisms
operate along the longitudinal and transverse propagation directions, due to the differences in stress
state and substructure at the fronts and propagation velocities. The model allows the determination of
the shape of a growing martensite plate, which closely resembles lenticular martensite. If xz is the habit
plane, the direction of transverse propagation is oy and the major shear direction is ox, the martensite
lens can be described, at time ¢, by the equation
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where v.4 and v, are the velocities of longitudinal and shear elastic waves and k is a parameter. The
arrest of growth takes place by uncoupling between the transformation front and the plastic waves that
precede it. The implication of the pressure rise associated with the wave upon the nucleation is dis-
cussed.

Résumé—Nous pensons que la croissance de la martensite lenticulaire, dans les systémes Fe-Ni et Fe-C
par exemple, se produit par la propagation d’ondes dans le matériau. Nous proposons deux types
d’ondes différents: des ondes de transformation longitudinale et transversale, qui se propagent & des
vitesses proches de celles d’ondes élastiques. L’'onde de transformation longitudinale provoque le début
de la transformation, lorsqu’un germe a dépassé la taille critique; elle se propage radialement dans des
directions du plan d’accolement, formant la cote médiane. Le disque de martensite produit par I'onde de
transformation longitudinale joue a son tour le role d’'un germe pour la transformation transversale.
Nous parlons alors d’un ‘germe du second ordre’, afin de faire la différence avec le ‘germe du premier
ordre’, qui a provoqué le début de la transformation. Les ondes de transformation transversales se
propagent perpendiculairement au plan d’accolement, en partant de la cote médiane. En méme temps,
des défauts se forment selon divers mécanismes le long des directions de propagation longitudinale et
transversale, du fait de différences dans les états de contrainte et de la sous-structure aux fronts et dans
les vitesses de propagation. Ce modéle permet de déterminer la forme de la plaquette de martensite en
cours de croissance: elle ressemble fortement a une martensite lenticulaire. Si xz est le plan d’accolement,
la direction de propagation transversale est oy et la direction principale de cisaillement est ox; on peut
alors décrire la martensite lenticulaire a I'instant ¢ par ’équation:
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ou v,y et v, sont les vitesses des ondes élastiques longitudinale et de cisaillement, et ou k est un
paramétre. L’arrét de la croissance se produit par découplage entre le front d’onde de transformation et
les ondes de déformation plastique qui le précédent. Nous discutons les conséquences sur la germination
de 'augmentation de pression associée a I’onde.

Zusammenfassung—Es wird vorgeschlagen, daB das Wachstum der typischerweise in den Fe-Ni- und
Fe-C-Legierungen vorkommenden linsenformigen Martensiten iiber die Ausbreitung von Wellen im
gesamten Material einsetzt. Zwei verschiedene Wellentypen werden postuliert: longitudinale und trans-
versale Umwandlungswellen mit Ausbreitungsgeschwindigkeiten in der GroBenordnung von elastischen
Wellen. Die longitudinale Umwandlungswelle leitet den Umwandlungsprozess ein; wenn ein Embryo
eine kritische Grofe einmal erreicht hat, wird er ein Keim. Dieser vergroBert sich radial in Richtungen,
die in der die Mittellinie bildenden Habitebene liegen. Der von der longitudinalen Welle gebildete
Martensit wirkt als Keim zweiter Ordnung. Diese Bezeichnung wurde zur Unterscheidung vom Keim
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erster Ordnung, der die Umwandlung startet, gewéhlt. Die transversale Umwandlungswelle geht aus von
der Mittellinie und breitet sich senkrecht zur Habitebene aus. Demzufolge laufen -hervorgerufen von den
Unterschieden im Spannungszustand und in der Substruktur an den Fronten und den Unterschieden in
den Ausbreitungsgeschwindigkeiten- verschiedene Mechanismen der Defekterzeugung entlang der longi-
tudinalen und der transversalen Ausbreitungsrichtung ab. Das Modell erlaubt, die Form einer wachsen-
den Martensitplatte, die einem linsenformigen Martensit weitgehend #dhnelt, zu bestimmen. Mit xz die
Habitebene, oy die Richtung der transversalen Ausbreitung und ox die Haupt-Scherrichtung kann die
Martensitlinse zur Zeit ¢t mit folgender Gleichung beschrieben werden:
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v.q und v, sind die Geschwindigkeiten der elastischen longitudinalen und transversalen Wellen, k ist ein
Parameter. Das Wachstum hort auf durch Entkoppeln von Umwandlungsfront und vorauslaufenden
plastischen Wellen. Die Bedeutung des Druckanstieges durch die Welle auf die Keimbildung wird

diskutiert.

1. INTRODUCTION

All other factors remaining constant, the velocity of a
moving interface increases with increasing driving
energy. The upper limit of this velocity is the velocity
at which the atomic disturbances generated by the
interface can be propagated throughout the material.
The condensation shock [1, 2] is an example of a fast
transformation (vapor-liquid) propagating in a wave-
like fashion. In solid systems, martensitic transform-
ations may propagate in a wave regime if sufficient
driving energy is provided. Two types of elastic dis-
turbances propagating at two characteristic velocities
exist in solids: equivoluminal or shear waves (when
the atomic displacements are perpendicular to the
propagation direction) and dilatational or longitudi-
nal waves (when the atomic displacements are parallel
to the propagation direction). If the amplitudes of the
waves exceed a certain critical value, one has, in gen-
eral, plastic shear and shock waves. It is herein pro-
posed that a moving interface in the martensitic trans-
formation may propagate at velocities lower or equal
to the above velocities. Accordingly, a transformation
wave that establishes the upper limit for the propaga-
tion velocity is postulated. It is assumed that when
the driving energy for the transformation is high
enough, the velocity of transformation will reach this
value; in this situation the transformation is said to
propagate in a wave regime. A general mechanical
disturbance propagates throughout a solid as two
separate waves, traveling at well established velocities.
A transformation produces atom displacements that
are more complex than the ones generated by conven-
tional waves, since all atoms cannot have identical
displacement vectors. These atom displacements can-
not be separated in displacements parallel and normal
to the direction of propagation. Consequently, the
velocity of the transformation wave will vary, depend-
ing on its propagation direction. It will be assumed
that its initial value varies between the velocities of
elastic dilatational and elastic shear waves:

Ups < Uy < Ugq.

If the direction of displacement of groups of atoms is
close to the direction of propagation, v, = v, If the

displacement of groups of atoms is approximately
perpendicular to the propagation direction then
Uy = Vs

It should be emphasized that the concept of wave-
like propagation of martensite is not new; in 1951
Machlin and Cohen [3] concluded that martensite
growth in an Fe-309% Ni alloy took place by the
propagation of a strain wave. The experiments con-
ducted by Kulin and Cohen [4] corroborated this hy-
pothesis. And, in 1955 Crussard [5] attempted to
apply the shock-wave theory to the growth of marten-
site.

It is the objective of this paper to describe the
growth of lenticular martensite in terms of the propa-
gation of transformation waves. It is, of course, recog-
nized that in only a fraction of the systems martensitic
transformations take place under a wave regime.
Thermoelastic martensite is known to grow slowly,
and there is a dramatic decrease in the level of acous-
tic emission, as the carbon content of steel is de-
creased and the martensite morphology changes to
lath [6]. Accordingly, the arguments developed in this
paper apply to lenticular martensite characteristically
occurring in Fe-Ni alloys (~30% Ni) and in steels
with high carbon content. In particular, the calcula-
tions are conducted for a hypothetical Fe-30% Ni
alloy with a {259} type habit plane. The velocities of
dilatational and shear elastic waves for this alloy were
computed by interpolating the elastic constants for
iron and nickel and assuming isotropy; they were
found to be 5780 and 3150 m/s, respectively. The
strains introduced by the formation of a martensite
lens and required to effect the transformation are
complex and comprise the Bain strain, the rigid lattice
rotation and the invariant strain. However, for the
purpose of the arguments developed here, it will suf-
fice to consider the macrostrains as composed of a
shear of 0.20 along the habit plane and a dilatational
strain of 0.05 normal to the habit plane. If the habit
plane is taken as x—z, and the shear direction as ox,
then one can express these strains, in the matrix form,
as:

& Wy 0 010 0
e &  Ie| =010 005 of (1
e e & 0 0 0



MEYERS: ON THE GROWTH OF LENTICULAR MARTENSITE

The above simplification allows one to consider two
disturbances propagating ahead of a moving front: a
uniaxial strain disturbance and a shear disturbance.

2. MODEL

Prior to the presentation of the model in terms of
the combined propagation of waves in the longi-
tudinal and transverse directions (Section 2.2) and of
the mathematical description of the front profiles
(Section 2.3), a few comments on nucleation are
noteworthy.

2.1 Nucleation

At the outset, it is emphasized that no attempt is
made here to correct or refute existing theories on
martensitic nucleation. It is felt that the consideration
of the dynamic nature of the phenomenon might help
in the understanding of nucleation. If one views the
embryos according to classical nucleation theory,
then they are treated as transformation products
already grown to a certain size[7]. An alternate
approach is to consider the nucleus as forming instan-
taneously. If such is the case, then the lateral expan-
sion (€, = 0.05) is inhibited at time ¢, = 0. In other
words, the nucleus is initially compressed until the
expansion wave releases it. The extent of the stress
generated by this initial compression is given by the
Hugoniot curve for the alloy in question. This is
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actually a dynamic compressibility curve. One way of
obtaining this curve is from the empirical linear rela-
tionship between particle and shock velocities U, and
U,.

U,= C + SU,. V)]
It is reasonable to obtain the coefficients C and S
through an interpolation from the values for Fe and
Ni [8]. One obtains:

C = 3.876 x 10° cm/s
S =1.783
po = 8.17 g/cm? (initial density).

Applying equation 4.15 of Ref. [9], one obtains a re-
lationship between the pressure and the ratio between
the compressed volume ¥ and initial volume V.

[1=s(-7)]

In the state of uniaxial strain generated by €,, one has

©)

VK —(l—e)l =)l —€,) @
0
and
_ Cpye,
P= (= se)” ©)

Figure 1 shows the resulting dynamic compressibility

PRESSURE, G Pa

Fe - 30pct. Ni

1

-002

-0.04 -006

UNIAXIAL STRAIN, Gy

Fig. 1. Pressure vs uniaxial strain €, for an Fe-309; Ni alloy.
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curve. The strains are indicated as negative in the
abcissa because they are compressive. The uniaxial
strain €, = 0.05 will generate a pressure of 7.4 GPa;
this pressure is well within the realm of shock waves.
The cross-hatched area is equal to the energy released
when the nucleus expands and the pressure is reduced
(from 7.4 GPa) to zero. This energy is equal to
180 mJ/m3. The shear component of the displacement
and the interface will also contribute with an energy.
Kaufman and Cohen [10] estimate these two terms to
be equal to 38 mJ/m3. Thus, the dilatational term can-
not be neglected if one assumes that the nucleus forms
instantaneously and the pressure builds up. Indeed, it
could account for the large undercooling required
(To — M, ~ 200K) in these alloys, while the under-
cooling required for thermoelastic martensites is of
a few degrees. In effect, the change in free energy
per K is of 0.72mJ/m?® — K in an Fe-30% Ni alloy
and an undercooling of 250 K can be accounted by
the pressure effect, assuming a 74 GPa maximum
pressure. The dilatational strains in thermoelastic
martensites are of the order of 0.005 (see Table 1 of
Ref.[11]) and no significant pressures would be
achieved. This might indeed be the critical difference
between thermoelastic and ‘irreversible’ martensites.

Another point of concern is the thermodynamic cri-
terion normally used in the classic developments; the
use of the minimum Gibbs free energy as the equili-
brium criterion only applies when the pressure is con-
stant. The ‘instantaneous’ nucleation situation
depicted above takes place under constant volume
and temperature, and the Hemholtz free energy would
be a more appropriate criterion, at time ¢, = 0. It is
only when the expansion starts to occur, with an
attendant decrease in P, that the temperature will
change (actually, decrease). This expansion will be
studied in greater detail in Section 2.2. The following
expression is proposed for the net Hembholtz free
energy difference between austenite and martensite
per plate:

AF = AF, + AF, + AF; + AF.. )

The subscripts s, p, i, and ¢ refer to strain, pressure,
interfacial energy, and chemical energy.

2.2 Propagation

The essential features of the proposed mechanism
are presented in Fig. 2. The growth process is initiated
when an embryo reaches a critical size. It proceeds by
the coupled propagation of longitudinal and trans-
verse transformation waves. The longitudinal trans-
formation wave initiates the process. It radiates out of
the nucleus along a specific crystallographic plane:
the habit plane, Fig. 2(a). One could describe it as a
second-order nucleus, as compared with the first-
order nucleus required to activate the longitudinal
transformation wave. The transverse transformation
wave propagates perpendicularly to the habit plane; it
initiates its course at the second-order nucleus and
grows outwardly, on the two sides. Figure 2(b), in
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Fig. 2. Growth of martensite lens by wave propagation. (a)

longitudinal propagation along plane xz at velocity vy,

starting at nucleus; (b) transverse propagation with vel-
ocity v, perpendicular to habit plane (direction oy).

which a section was made perpendicular to the habit
plane, shows both the longitudinal and transverse
propagation. It is clear, in the present proposal, that
the longitudinal wave produces the mid-rib and that
the transverse wave produces the lateral sides of the
martensite. Although the longitudinal and lateral
growth take place concurrently, they will be described
separately, in the next sub-sections.

2.2.1 Longitudinal propagation. Once the nucleus is
formed, it will propagate along the undistorted and
unrotated planes (habit planes) at a velocity v;,. There
are definite reasons why thé propagation takes place
along the habit plane. Reshuffling of the atoms is less
severe along this plane and the energy required is less.
Accordingly, the energy required for growth along
another orientation would be larger. Referring to
equation (1), one can see that the particle displace-
ment can be expressed by y,,. So, in the ox direction
the particle motion should be close to parallel to the
propagation direction; in the oy direction, they
should be perpendicular. One can therefore assume
that:

(Vi)o=0 = Vea

™

A continuous variation of velocities for intermediate
orientations, between the above limits is given by a

(Ult)9=n/2 = Vs
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cosine function.

(Uh)o = %[(ved - ves) cos 20 + Vea + ves]' (8)
The configuration of the front after different propaga-
tion times is calculated in Section 2.3.

The atomic displacements at the longitudinal
propagation front are, because of the inherent re-
quirements of the transformation, more complex than
in conventional elastic or plastic waves. They will not
be analyzed in detail here, and a qualitative proposit-
ion will be made. The combined effect of the Bain
strain, the invariant shear strain (equal to 0.25 accord-
ing to Ref. [12]) and the lattice rotation would gener-
ate high shear stresses at the longitudinal front, if no
relaxation mechanism were present. Multiplying the
invariant shear strain by the shear modulus, one
obtains a rough estimate of the stress level attained,
if no accommodation took place. It would equal
15 GPa. However, these stresses can be accommo-
dated by one or more of the following deformation
modes.

(a) Homogeneous dislocation nucleation. The shear
stress required for the homogeneous nucleation of a
partial dislocation is roughly 5 GPa[13]. The shear
stresses imposed at the longitudinal propagation front
would be more than sufficient to nucleate them. In
case dislocations are the carriers for the translation
and rotation, a mechanism analogous to the one pro-
posed by Meyers [14, 15] for shock waves is thought
to be operative. Essentially, a shock front is a wave
that transforms the virgin phase into a reduced lattice.
Both phases have the same crystal structure, but dif-
ferent lattice parameters. The shear stresses that build
up at the shock front are sufficient to homogeneously
nucleate dislocations. Once generated, the disloca-
tions do not advance with the front; these deviatoric
stresses periodically build up again, giving rise to new
dislocation interfaces.

Dislocation dynamical considerations do not have
a bearing on the velocity of propagation of the longi-
tudinal transformation wave because dislocations do
not accompany the front. Dislocation generation, and
not dislocation motion is responsible for the accom-
modation of the invariant lattice strains and rigid-
body rotation. The dislocations are left behind the
front and, therefore, have no bearing on its propaga-
tion. Meyers [15] discusses the effects of dislocation
dynamics on the propagation of the shock front. The
same arguments are valid for a transformation front.

(b) Twinning. Twin formation by homogeneous nuc-
leation of the first loop of a partial dislocation
is discussed by Hirth and Lothe[16]. The stress
required for the first dislocation is the same as in item
(a): around 5 GPa. However, the succeeding disloca-
tions required for twinning have a much lower critical
stress for nucleation: under 0.5 GPa.

(c) Movement of existing dislocations. If the longi-
tudinal propagation front is moving into a lattice with
a high dislocation density, movements of the existing
dislocations can accommodate the high shear strains.
Application of the Orowan equation shows the extent

of motion. If the density of dislocations is of 10'!
cm™2, one has:
1= = 083um ©)
pb

where 7y is the shear strain, p the dislocation density,
b the Burgers vector and [ the distance that each dis-
location has to move. This distance is quite reason-
able. The stress required to move existing dislocations
is, of course, dependent on their velocity (e.g. Fig. 4 in
Ref. [15]). Nevertheless, the dislocations can be dis-
placed at sufficiently high velocities at stress levels
substantially below the ones required for homo-
geneous dislocation or twin nucleation.

It should be noted that the conventional generation
mechanisms, such as Frank-Read sources for disloca-
tions and the pole mechanism for twinning were not
considered. This is so because they would have to
involve dislocation motion at velocities higher than
the propagating longitudinal front. Consequently, the
velocities of these dislocations would be necessarily in
the supersonic range. Which one of the above three
deformation modes would be preferred? In Fe-Ni
alloys, the extent of twinning decreases with increas-
ing amounis of deformation of the austenite [17, 18].
Although an explanation is provided by Johari and
Thomas [17], an alternative explanation according to
the deformation modes explained above, is that the
movement of existing dislocations provided the means
for the inhibition of the shear strains. And the experi-
ments conducted by Rohde et al.[19] lend striking
support to the proposed rationale. Upon shock-
loading Ti-gettered iron, they found profuse twinning
in the pre-annealed condition and total suppression of
shock-induced twinning by prior cold work. Mahajan
[20] obtained similar results upon shock-loading
iron. So, the deviatoric stresses produced by a shock
wave are accommodated by twinning when no dislo-
cations are available and by motion of the already
existing dislocations, if the iron is pre-deformed.

2.2.2 Transverse propagation. The martensitic
region generated by the propagation of the longitudi-
nal transformation wave acts as a second-order nu-
cleus for the transverse growth of martensite. Equa-
tion 1 shows that once this nucleus forms, transverse
propagation can take place, imposing the strains y,,
and ¢, to the surrounding matrix. Since the phenom-
enon is dynamic, these plastic disturbances propagate
in wave-like fashion. Thus, a plastic shear wave and a
plastic shock wave are generated by the shear strain
7xy and uniaxial strain e, respectively. These two
waves travel initially at velocities close to the veloci-
ties of elastic shear and dilatational waves, respect-
ively; thus, the velocity of the shock wave is roughly
twice that of the plastic shear wave that follows. If the
nucleus would not induce transverse transformation,
these waves would rapidly attenuate themselves after
being emitted at time ¢,. However, the passage of the
shock and shear waves promotes the material trans-
port required, as long as their amplitude is high
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enough, so that a transverse transformation wave
can closely follow them. This transverse trans-
formation wave transforms—by means of organized
atomic motions smaller than the interatomic spac-
ing—the austenitic into the martensitic structure. The
sequence of events as it is thought to occur is shown
in Fig. 3(a-d). The transverse transformation wave
moves perpendicularly to the habit plane; its course is
initiated at the region transformed by the longitudinal
wave. The two velocities v, and v,, are the transverse
and longitudinal transformation wave velocities, res-
pectively. It is seen in Fig. 3(a) how the plastic shear
and shock waves precede the transformation wave.
Figure 3(b) shows the instant at which the growth
stops as the plastic shear and shock waves continue to
advance [Fig. 3(c)]. However, because they are not
energized by the transverse transformation wave
any longer, they steadily attenuate themselves. This
attenuation is of two sorts: (a) geometric attenuation,
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because the overall dimensions increase with roughly
the square of the distance from the mid-rib plane
(assuming a spherical wave front), and (b) dissipative
attenuation, because of the energy required to create
and move lattice defects along their path. After their
amplitudes decrease below a critical value they
become elastic waves. This is shown in Fig. 3(d). The
dilatational wave has roughly twice the velocity of the
shear wave; therefore, it precedes it. Another aspect of
Fig. 3 that deserves attention is the process by which
a hypothetical fiducial mark imbedded in the matrix
is distorted. In Fig. 3(a) the plastic wave is shown to
be responsible for the material transport that causes
the distortion. The material transport becomes larger
and larger, as the plastic waves advance [Fig. 3(b)].
But, once the transformation stops, the material
transport steadily decreases, as the plastic waves at-
tenuate themselves [Fig. 3(c)]. Figure 3(d) shows the
final configuration of the fiducial mark. Regions very

TRANSVERSE
TRANSFORMATION WAVE

PLASTIC SHEAR AND
COMPRESSIVE WAVES

INSTANT AT WHICH
GROWTH STOPS

PLASTIC SHEAR AND
COMPRESSIVE WAVES
STEADILY ATTENUATING
THEMSELVES

PLASTIC ACCOMODATION
STRAINS PRODUCED BY
WAVES

ELASTIC SHEAR
WAVE
\\
A e
N \

|ELASTIC DILATATIONAL
| WAVE

Fig. 3. Distortion of a hypothetical internal marker during propagation of martensite. (a) plastic shear

and compression waves preceding transformation front; (b) and (c) after transverse propagation is

arrested, plastic shear and compressive waves (shown coinciding) continue their course, steadily attenu-

ating themselves; (d) after plastic waves underwent full attenuation to elastic shear and longitudinal

waves, distortion of fiducial mark has the final shape. Observe plastic accommodation strains in front of
final a—y interface.
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Fig. 4. (a) Lateral displacement vs distance (taken perpendicularly to habit plane) plot at various times

t,—tg, corresponding to the displacements in Fig. 3(d);

far away from the transformation are not affected,
and therefore no distortion can be observed. How-
ever, as one approaches the austenite-martensite
interface, the lines become increasingly distorted.
Within the martensite plate, the line is rotated by ¥;
due to the linearity of the transformation it remains
straight. The point where the mid-rib intersects the
line should be the center for the rotation of ¥. Points
along the old trajectory (dashed line) are displaced to
the new line. One has 1 -1/, 252, 353, 44,
555, 656, 7T—7. Actually, the lines 1—1,
2—2,3—53,4—4" are not parallel to the mid-rib;
but one can assume them to be parallel, in the de-
scription that follows. So, macroscopic matter transfer
has to take place. This transport is greater the farther
the point is from the mid-rib. The submicroscopic
atom shifts cannot perform this matter transference
because atomic motions are less than an interatomic

(b) pressure vs distance plot at various times t,~tg.

spacing. So, the plastic accommodation is produced
on the larger scale by the plastic waves—mainly, the
plastic shear wave—that precede the submicroscopic
martensitic rearrangements.

Figure 4 shows the wave configurations at various
times to—tg in greater detail. The times to—t5 in Fig. 4
correspond to the instants at which the transform-
ation front reaches points 0-5, in Fig. 3(d), while tg, 5,
and tg correspond to the instants at which the top of
the plastic shear front reaches points 6, 7, and 8, re-
spectively. Both shear and compression plastic waves
propagate ahead of the transformation. They are,
however, presented separately in Fig. 4(a) and 4(b),
respectively, for the sake of clarity. A qualitative de-
scription of their configuration and behavior is given
in Fig. 4, as well as in the discussion below. The sim-
ultaneous generation of shock and shear waves has
been theoretically treated by Bleich and Nelson [21]
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and Ting and Nan[22] and was experimentally
observed by Abou-Sayed et al.[23], but a rigorous
analysis is not essential at the present level of under-
standing of the phenomenon. Figure 4(a) shows the
progression of the leading plastic shear wave, while
Fig. 4(b) shows the advance of the compressive wave
due to the continuous emission of shock pulse from
the transformation front. The displacements 1 — 1/,
2—52,353,4-54,5>5,6—6,and 7— 7 corre-
spond to the material transports shown in Fig. 3(d).
Five types of waves are shown: in addition to the
transverse transformation and plastic shear and com-
pression waves, elastic shear and longitudinal waves
(precursor waves) are shown; these waves do not have
a substantial effect on the transformation. The dis-
placements produced by them are much smaller than
the ones produced by the plastic shear and com-
pression waves and can probably be neglected. Along
the distance axis, three regions can be discerned; a
region of transformation (displacements 1-4), a region
plastic deformation of the austenite (displacements
5-7) and a region of elastic deformation extending
beyond displacement 8. From t;—t,, the displacement
at the plastic shear wave increases linearly with dis-
tance (requirement for linear transformation). In this
range, it carries the transformation wave [hatched
region in Fig. 4(a)]. Beyond t, the shear wave does
not trigger the transformation; the plastic wave no
longer carries the transformation wave. Since it is no
longer energized by the transformation wave, its
amplitude decreases (ts—t;) until it becomes equal to
the dynamic shear strength of the metal. Beyond that
point it is merely an elastic shear wave. Figure 4(b)
shows the compression vs distance plot; at time ¢, the
nucleus is formed and (see section 2.1) the pressure
suddenly rises to 7.4 GPa, because the strain €, = 0.05
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is inhibited. This produces a shock pulse with an ex-
tremely low duration (dictated by the thickness of the
region). As the transformation wave advances, shock
pulses of 7.4 GPa are continuously emitted and
advance into the austenite, attenuating themselves
and generating defects in the process. The situation is
unique in that a moving shock-wave source travels
through the matrix. The compressional wave front is
therefore not steep but sloped, and it would be a mis-
nomer to call this wave a ‘shock’ wave. A ‘com-
pression’ wave is a better name.

An important feature of plastic shear waves is that
they are not characterized by an abrupt front (see, for
instance, Fig. 6 of Ref. [23]). This is due to the fact
that larger shear displacements propagate at velocities
lower than small ones (the inverse is true for shock
waves). Thus, at time ¢5 the velocity (vs), is lower than
(vy)s, [Fig. 4(a)], because (vy), is at a higher displace-
ment level. The slopes of the plastic shear front were
assumed to be linear in Fig. 4(a), in accord with ex-
perimental measurements for 6061-T6 aluminum,
reported by Abou-Sayed et al. [23, 24]. These slopes
were assumed to decrease linearly, as the wave pro-
gresses through the material. This decrease in slope
with time, due to a velocity dependence of displace-
ment, has an important effect on the velocity of the
transverse transformation wave. Since transformation
can only occur at the top of the plastic shear wave,
the velocity of the transverse transformation wave has
to decrease with distance. Its initial value is the vel-
ocity of the elastic shear wave v,,. Assuming a linear
decrease in slope of the plastic shear wave, then the
velocity of the transverse transformation wave de-
creases linearly with distance. This is shown in Fig. 5,
together with the distance dependence of the displace-
ments labelled as they are in Fig. 3(d).
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Fig. 5. Velocity of transverse transformation wave as a function of distance from plane of longitudinal
propagation. Displacements of Fig. 3(d) shown on same plot.
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(HABIT PLANE)

DIRECTION OF
TRANSVERSE PROPAGATION

Fig. 6. Schematic representation of martensite lens during growth. Origin of axes coincides with position
of embryo.

The displacements shown in Fig. 5 are ac-
complished by plastic deformation of the parent
phase. It is interesting to observe that, since the shear
wave precedes the transformation, the majority of the
defects are generated in the parent phase and are then
inherited by the martensitic structure. The transverse
transformation front also might be responsible for the
generation of a small fraction of these defects, because
the austenite-martensite interface is not fully coher-
ent; because it moves at high velocities, it is reason-
able to think that these intrinsic interfacial disloca-
tions are left behind and continually re-created as the
front advances. Dislocation dynamical considerations
(discussed in Ref. [15]) would point to this.

2.3 Mathematical description

It is relatively straightforward to describe the
propagation of the front, once the velocities of the
transformation wave along the various orientations
are known. This will be done in this section. Figure 6
shows a martensite lens during propagation: the
plane xy is the longitudinal propagation plane (shear
direction ox) and oy is the direction of transverse
propagation. The equation of the front profiles at the
three planes xz (longitudinal propagation), yx, and yz
(transverse propagation) will be calculated in the next
three subsections. Then, the equation for the growing
martensite lens will be derived.

2.3.1 Plane of longitudinal propagation (xz). At time
t; the longitudinal propagation front shown in Fig. 6
can be determined by substituting (v4,), from equation
(10)

X+ 2% = (o)t} (10)

into equation (8):

x2 + ZZ — tizl:(ved - Ues)COS 20 + Vg + Ues]z

2
But
cos 20 = cos?6 — sin?f
and
x
cosf =
x? + 22
z
sin § =
x? + 22
s0:

(2 + 222 — t(xP0q + 220,) = 0. (12)
Equation (12) is plotted in Fig. 7(a) for four different
times.

2.3.2 Plane of transverse propagation (xy). The plane
xy is a diametral section with respect to the growth,
started at instant t, when the embryo transformed
into a nucleus. The shape shown in Fig. 6 is the shape
at time t;. The coordinates of point P,(x, y) at the
instant ¢; can be determined by the following calcula-
tions. The lateral growth at the ordinate (growth in
the y direction) can only start once the longitudinal
growth has extended to this region. Once the coordin-
ates of (x, y) are known, the locus of the P(x, y) points
can be determined by making ¢ vary from t, = 0 to t;.
The longitudinal displacement is given by:

[X| = Veqt. (13)
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Fig. 7. Cross sections of martensite passing through origin at various times during growth
(k = 4 x 105s™1); (a) longitudinal propagation (plane xz); (b) transverse propagation (plane xy); (c)
transverse propagation (plane yz).

The transverse displacement is:

dy = v, dt. (14)
But the velocity of a transverse transformation wave
decreases with the amount of shear required (see
Fig. 5). It is assumed to decrease linearly with dis-
tance and the initial value is taken as the velocity of
the elastic shear wave. Thus, it is expressed as:

Ugp = Ues — k|Y| (15)
Substituting equation (15) into equation (14):
dy = (Ues - k|}’|)dt (16)

The differential equation is solvable by variable sub-

stitution. Making:

z= ves_klyl (17)
dz = dv,, — kdy (18)

or
dy = —dz/k. 19)

Substituting equation (19) into equation (16), one
obtains:

Inz= —kt+c¢ (20)
or

In(ves — klyl) = —kt + c. (21)
Applying the boundary condition: t = t; at y = 0

¢ = In v, + kt. 22)
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Substituting equation (22) into equation (21):

In (v,s — k|y|) = — kt + In v, + kt;. (23)
Substituting equation (13) into equation (23):
ln(l — lfl—ﬂ) = k(liI —~ t,-). (24)
Ves Ved

2.3.3 Plane of transverse propagation (yz). Following
the procedure delineated in Section 2.3.2, one obtains:

o1 22) <22
Des ves

Equations (24) and (25) are plotted in Figs. 7(b) and
7(c), respectively, for four different values of time.

2.3.4 Three-dimensional propagation. Following the
procedures delineated in Sections 2.3.1 through 2.3.3,
it is possible to describe the growing martensite plate
by means of a single equation. For this, it suffices to
choose a general point P; (x,y,z) on the austenite-
martensite interface (Fig. 6), and to consider the
propagation as composed of a longitudinal term
(from the origin to x, 0, z) and of a transverse term
(from x, 0, z to x, y, z). The computation of the total
time is made applying equations (12) and (16), by inte-
grating the latter.

(2 + 2232 1 (1

(25)

- 'M) =t. (26

——In

X204 + 220, Kk Ves

Figure 8 shows a computer-generated perspective
view of the martensite lens at time ¢; = 1073 s.

2.4 Final size and shape

While the shape discussed in Section 2.3 (Figs 7
and 8) closely resembles lenticular martensite, it could
very well not have any relationship with the final
shape and size of the martensite, if the coupled
growth ceases at a certain point, i.e. if the transform-
ation front separates from the plastic waves that pre-
cede it, decelerating itself and advancing quasi-
statically. Machlin and Cohen [3] showed that mar-
tensite plates did not thicken, once the temperature
was decreased. This indicates that once plate growth
is arrested it cannot restart, even if the chemical driv-
ing force is increased, and strongly suggests that dy-
namic factors are essential for growth.

Growth will be arrested if either the longitudinal or
transverse propagation are inhibited. It will be
assumed here that propagation stops immediately if
the transformation front separates (the term ‘un-
couples’ will be used) itself from the plastic waves that
precede it. Once the uncoupling takes place in one
region of the front, it has the ability to propagate
itself along the front. Hence, if the growth of the plate
is arrested at a point, this arrest propagates itself
along the front.

Figure 9 shows a situation typical of a polycrystal-
line material: growth arrest is initiated when the
longitudinal propagation is stopped by a grain
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Fig. 8. Computer-generated perspective view of martensite
lens at t; = 1075 s.

boundary. The uncoupling front shown propagates
along the transverse transformation front. This un-
coupling front should have a velocity within the same
range. The experimental observation that martensite
plates with different sizes have fairly constant width/
diameter ratios supports the contention that no por-
tions of the front can freely propagate, once growth
has stopped in an adjacent region. If such were the
case, smaller (along the mid-rib) plates would have a
proportionally greater thickness than large ones.
There are situations in which longitudinal propaga-
tion can proceed freely over relatively large distances
(single crystals or specimens with large grain size). In
this case, transverse propagation can be the size-
determining factor. The transverse propagation situ-
ation is not a steady-state one, the velocity decreasing
with propagation distance (Fig. 5). The amount of
displacement preceding the front also increases with
distance. Transverse propagation will stop when the
work required to propagate the wave becomes greater
than the free energy decrease due to the martensitic
transformation. The free energy difference for a
Fe-309; Ni alloy is approximately equal to
—120 mJ/m3? (—200 cal/mole [25]); hence the free
energy per unit area of wave front gained by a front
advance of dy is (—120dy)mJ/m2. On the other
hand, the work required to advance the front by dy
increases with the thickness y of the lens, because of
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Fig. 9. Schematic representation of growth arrest in polycrystalline material.

the build-up of plastic waves that precede the trans-
formation front. Once growth stops at a point—and,
consequently, uncoupling takes place—this un-
coupling will propagate along the front.

It should be noted that thermal effects were not
considered in the above discussion. Thermal effects
are very complex, because they involve temperature
rise due to the release of chemical free energy and
motion on dislocations as well as a temperature de-
crease due to the pressure decrease. They definitely
have an effect on the mechanisms discussed above.

3. EXPERIMENTAL EVIDENCE

There is a considerable amount of information in
the literature supporting the general features of the
model proposed herein for the growth of martensite
in terms of wave propagation. Some of this supportive
evidence is briefly discussed below.

(a) The overall shape of lenticular martensite and
the presence of a mid-rib are consistent with the pro-
posed model.

(b) The proposition that the defects are generated in
the austenite and then inherited by the martensite is

supported by Crocker and Ross[26], and Krauss
and Pitsch [27], who observed slip lines in the austen-
ite surrounding a martensite plate. Additionally,
McDougall and Bowles [28], and Jena and Wayman
[29] observed striations in martensite inherited from
the parent austenite.

(c) The low temperature dependence of growth vel-
ocity [4], as well as the fact that growth cannot be
reinitiated once it is stopped [3] are consistent with a
wave mechanism for propagation.

(d) The occurrence and inhibition of twinning can
be explained by the strain rates, stress states and sub-
structures encountered by the propagating transform-
ation waves. The existence of a dislocation substruc-
ture seems to inhibit twinning. Consequently, pre-
deformed materials tend to exhibit dislocations along
the mid-rib. Even when twinning is prevalent at the
mid-rib it often does not occur over the whole width
of the lens. This is so because of two reasons: (a) the
plastic waves that precede the transverse transform-
ation wave generate more and more defects as they
advance; (b) the transverse propagation velocity, and
consequently strain rate decrease as the wave
advances; twinning is known to be favored over dislo-
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cation generation and motion at very high strain
rates.

(e) The interactions observed between a propagat-
ing front and phosphide particles by Neuhauser and
Pitsch [12] find a very clear explanation by the appli-
cation of the concepts described herein; the ‘shadows’
of retained austenite are regions shielded from the
plastic and transverse transformation waves by the
particles. Similarly, jagged edges often encountered
along the lateral interface of martensite can be very
easily explained in terms of the ability of a plastic
shear wave to propagate and to overcome obstacles.

(f) The burst phenomenon can be explained as the
activation of embryos by the plastic waves (or the
elastic precursor waves). These waves interact with
existing boundaries, reinforcing themselves in certain
regions [30].

(g) Bunshah and Mehl [31] observed an effect that
they could not explain: in spite of the fact that the
martensite has a lower electrical resistance than the
austenite, the formation of the plate produced a high
resistance spike, followed by the expected decrease in
resistance. The adiabatic temperature rise alone
(~110°C) due to the energy released by the trans-
formation could not account for the spike, which
would correspond to a temperature increase of
1500°C, according to Bunshah and Mehl [31]. How-
ever, if one considers the effect of pressure on tem-
perature and electrical resistance, one can explain the
origin of the spike. During the propagation of the
martensite plate, the pressure inside should be high, if
shock waves are involved; this, in turn, produces a
transient adiabatic temperature rise (just as in the
compression of gases). A simple calculation will show
the pressure required.

AR AR R,
= [ (2o, (22 ar ]

where R; is the resistance at the top of the spike; Rgy,
the resistance at ambient temperature; ATy, the tem-
perature rise due to the transformation; AT,, the tran-
sient temperature rise due to the pressure; R,/R, is
the ratio between the resistance at pressure P and the
resistance at the pressure of one atmosphere. R,, Rgr,
and ATy can be obtained from Bunshah and Mehl
[311; R,/R, can be extrapolated from Lawson [32]
(Table 12, column 5); AT, is listed in Kinslow [33] for
AISI 304 stainless steel. Inserting these values in
equation (27), one has:

@7

3439 = [78 + 1.79 x 1072 x 110

+ 179 x 1072 x AT,] &. (28)
R,

By iteration for different values of the pressure one

obtains the equality for a pressure of approximately

22 GPa. It is worth observing that R,/R, is positive

for an Fe-30% Ni alloy and is negative for Fe-20%; Ni

alloy. This reversal would lend itself very well to a
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critical experiment: the spike should be eliminated or
sharply reduced for an Fe-20%;, Ni alloy.

7. CONCLUSIONS

In essence, the concepts described in the preceding
sections allow the following conclusions to be drawn:

(a) A model for the growth of martensite by wave
propagation is proposed. The model requires the pos-
tulation of longitudinal and transverse propagation
waves.

(b) The longitudinal transformation wave initiates
the growth process. It starts at the nucleus and propa-
gates radially from it, in the habit plane. Its propaga-
tion velocity varies between the velocity of a dilata-
tional elastic wave and that of an elastic shear wave in
this medium.

(c) The transverse transformation wave propagates
perpendicularly to the habit plane. The region trans-
formed by the longitudinal transformation wave acts
as a second-order nucleus for it. It grows initially with
a velocity close to the velocity of elastic shear waves.

(d) The overall shape of the propagation front is
calculated and is shown to strongly resemble lenticu-
lar martensite.

(e) Dislocation generation mechanisms at both the
longitudinal and transverse propagation fronts are
proposed.

(f) The interactions of transformation waves with
plastic shear and shock waves and elastic dilatational
and shear waves are discussed.

(g) The extent of plate growth is discussed in terms
of energy expenditure and separation (uncoupling) of
waves.
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