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bend and twist.[2,3] The central shaft 
provides the main mechanical support. 
Feather shafts are lightweight, stiff, and 
strong, yet sufficiently flexible, properties 
that have potential for the development of 
bioinspired materials for both aircraft and 
structural applications. The inside of the 
feather shaft is filled with air at the calamus 
(proximal end) and foam (medulla) at the 
rachis (middle and distal shaft) (Figure 2).

The feather rachis of different birds 
has been mainly simplified as a cylin-
drical shell filled with a foam core, with 
a focus on cortex properties, such as ten-
sile strength.[4–9] Feathers are based on 
β-keratin.[10–15] At the molecular level, 
keratinization of the feathers occurs by 
dead keratinocytes whose properties are 
determined during formation.[16] This 

implies that the microstructure is “designed” for intended 
functions. However, the detailed fibrous structure of the 
whole shaft is unexpectedly under-documented. An increase 
of axially aligned keratin molecules toward the tip within the 
feather rachis was reported [17]; circumferential, axial fibers, and 
crossed-fibers were observed by selectively degrading the matrix 
proteins.[18] A few studies used nanoindentation to obtain the 
local modulus and hardness of feathers by indenting in limited 
or unspecified locations.[2,19,20]

From an engineering perspective, the feather shaft resem-
bles a cantilever beam subjected to distributed loading; both 
the material properties (Young’s modulus, E) and the geometry 
(area moment of inertia, I) determine the flexural properties. 
The latter changes substantially from the proximal to the distal 
end of the feather shaft,[6] as the bending moment decreases 
accordingly. The geometry involves variations not only in size 
but also in shape.

In a quest to understand the structural design of feather 
shaft, we explain, for the first time, why its cross sectional 
shape changes from round to rectangular. Flight feathers from 
the California Gull (Larus californicus) and the American Crow 
(Corvus brachyrhynchos) representing marine and land birds, 
respectively, were studied.

2. Results and Discussion

2.1. Shape Factor of the Feather Shaft Cortex

The flight feather shafts from seagull and crow exhibit similar 
features, shown in Figure 2. The transverse sections of the shaft 

Only seldom are square/rectangular shapes found in nature. One notable 
exception is the bird feather rachis, which raises the question: why is the prox-
imal base round but the distal end square? Herein, it is uncovered that, given 
the same area, square cross sections show higher bending rigidity and are supe-
rior in maintaining the original shape, whereas circular sections ovalize upon 
flexing. This circular-to-square shape change increases the ability of the flight 
feathers to resist flexure while minimizes the weight along the shaft length. The 
walls are themselves a heterogeneous composite with the fiber arrangements 
adjusted to the local stress requirements: the dorsal and ventral regions are 
composed of longitudinal and circumferential fibers, while lateral walls consist 
of crossed fibers. This natural avian design is ready to be reproduced, and it is 
anticipated that the knowledge gained from this work will inspire new materials 
and structures for, e.g., manned/unmanned aerial vehicles.

1. Introduction

The square shape in nature has evolved in only a few living 
organisms. At the structural level, the seahorse tail (Figure 1a) 
is square and thus more resilient when crushed, preserving 
its articulatory organization upon bending and twisting.[1] The 
Nambikwara liana (Figure 1b) shows a square stem that con-
tains sharp edges and therefore has a protective effect against 
predators, and possibly increases its stiffness. Within verte-
brates, the avian feather rachis also shows a square cross sec-
tion. At the cellular level, plant cells have rectangular shapes, 
and porous plant stems have rectangular units. However, these 
are exceptions to the rule. Although the square seahorse tail 
has been recently explained,[1] the square cross section of flight 
feather rachis, which is distinct from the circular cross section 
of flightless feather rachis (Figure 1d,e), remains a mystery.

Flight feathers of volant birds, upon encountering aerody-
namic forces, aid the generation of thrust and lift, and primarily 
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at the calamus show elliptical compact cortices. In the region 
between the calamus and the proximal rachis (positions 2 and 3) 
in Figure 2, the cortex shows a near transitional shape with a 
groove at the middle of the ventral surface (blue rectangles in 
Figure 2b,c) where a foamy medulla (substantia medullaris) 
and a transverse septum (pink dotted lines in Figure 2b,c) start 
to develop. Toward the distal rachis, the cortex attenuates and 
the medulla gradually fills the cortex.

A salient feature, the shape change of cortex from circular 
at the calamus to square/rectangular toward the distal shaft, is 
strikingly different from that of flightless feathers, e.g., ostrich 
wing and peacock tail feathers (Figure 1d,e).[21] These are cir-
cular throughout the entire shaft length.[8,20] Flight feathers 
from other flying birds, e.g., condor (Figure 2d), pigeon,[6] barn 
owl,[2] pelican, and seriema,[21] show a similar change in shape 

factor; this is demonstrated by the squareness along the shaft 
length, the measured average radii of curvatures of different 
cortical regions, and the ratios of those radii over the entire 
cortical size, as plotted in Figure 3. At the calamus (positions 
1 and 2), the dorsal, dorsal–lateral corner, and lateral regions 
exhibit comparable radius of curvature; ratios of each radius of 
curvature over the local dorsal–ventral distance are all close to 
0.5, both indicating the circular cross sectional shape. Towards 
the distal shaft, the dorsal and lateral regions show clearly 
increasing radius of curvature and increasing ratio of the radius 
of curvature over the local dorsal–ventral distance; while the 
dorsal–lateral corner shows obviously a decrease in radius of 
curvature and decrease in ratio of the radius of curvature over 
the dorsal–ventral distance. These evidence the shape change 
from circle/ellipsis to rectangle. The dorsal region shows to a 

Adv. Sci. 2017, 4, 1600360

www.advancedscience.com www.advancedsciencenews.com

Figure 1.  Square shapes in nature: a) seahorse tail skeleton (reproduced with permission.[1] Copyright 2015, AAAS); b) liana stem from Nambikwara 
indigenous territory, Amazon; c) cross section of feather rachis from seagull. Cross section of circular rachis from d) peacock tail feather and e) ostrich 
wing feather.
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Figure 2.  Changing shape along the feather shaft: a) schematic of a flight feather shaft, numbers indicating positions along the shaft length (from 
calamus to rachis). Optical micrographs of the transverse sections along the shaft from b) seagull and c) crow and microcomputed tomography images 
from d) condor showing gradual shape change from circular hollow tube to rectangular foam filled. Pink dotted lines indicate the transverse septum 
and blue rectangles the ventral groove, respectively. Dorsal, lateral, and ventral portions of the shaft cortex are marked in the left figure.

Figure 3.  The roundness and squareness along the feather shaft length measured from the seagull primary feather (Figure 2b). a) Measured radii of 
curvatures of dorsal, dorsal–lateral corner, and lateral regions from the calamus to the distal shaft (represented by positions 1–6). b) Ratios of the 
radius of curvature of each cortical region over the local dorsal–ventral distance along the shaft length.
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smaller degree the increase in the radius of curvature, which is 
due to its convex shape.

In addition, toward the distal rachis, the dorsal and ventral 
cortices are much thicker than the lateral walls (approximately 
ten times thicker). This resembles a human-made I-beam 
where the majority of material is distributed at the upper and 
lower regions to resist the maximum stresses. Interestingly, the 
rectangular/square cortex at the distal rachis shows a slightly 
shorter height on one lateral wall (facing front, the leading 
edge [22]).

We show here that the shape change of cortex from round to 
rectangular plays a pivotal role in adjusting the area moment 
of inertia and thus the flexural rigidity along the shaft length. 
The shaft tapers toward the distal end, thus minimizing the 
deflection/weight ratio by tailoring the amount of material, 
shape and dimensions along the shaft. It does this by modu-
lating the bending rigidity (product of E and I), to sustain the 
complex forces at the base and to minimize the increasing 
deflection toward the distal rachis. The area moment of inertia, 
I, is correlated with the amount of material and the cross sec-
tional shape of a beam; a uniformly high value of I using a 
large amount of material would be mechanically favorable but 
would produce a weight penalty.[4,17] It will be shown below 
that changing the shape is an ingenious solution to enhance 
the bending rigidity while decreasing the overall weight of the 
feather.

2.2. Flexural Advantages of Square Tubes over Circular Ones

Beams with the same cross sectional area but different shapes 
give different area moments of inertia, e.g., for circular and 
square beams with the same cross sectional area (a2 =  πr2), the 
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higher flexural rigidity. Importantly, a square cross section has 
advantages over a circular one in resisting cross sectional shape 
change during bending. The calamus needs to be circular to 
penetrate smoothly into and connect efficiently with the tissue; 
once coming out of skin, the rachis gradually becomes rectan-
gular after ≈20% shaft length. The flexural behavior of hollow 
tubes, which feather shafts resemble, involves both the shape 
and the material’s structure.[23]

2.2.1. Flexural Behavior

We examine the bending response of 3D printed PLA (poly-
lactic acid, polymer) tubes with the same cross sectional area 
to answer the question: why does the feather shaft choose a 
square shape toward the distal rachis? The flexural load–deflec-
tion curves of all tubes are plotted in Figure 4a. Square tubes 
show consistently higher slope, and the flexural rigidity and 
modulus (Supporting Information, Section I) are ≈24.2% larger 
than circular ones. This indicates the higher efficiency (higher 
ability per unit area) of square tubes (representing the rachis) 
in resisting bending and minimizing flexural deformation than 
the circular ones that represent the calamus. In addition, cir-
cular tubes exhibit load–deflection responses that deviate sig-
nificantly from the initial linear region, indicating a decreasing 

value of I due to cross sectional shape change from circular to 
oval. This effect is called “ovalization”. Figure 4b shows that the 
circular tube exhibits a certain degree of ovalization (dashed 
lines); whereas the cross section of square tube retains almost 
the original shape.

The square tube delays the onset of shape change because 
of flat and large contact area that relieves stress concentration, 
whereas the circular tube readily undergoes ovalization due 
to loading on a much smaller contact region. In addition, the 
orthogonal edges of square tubes restrict further transverse 
deformation and thus resist the cross-sectional shape change. 
For circular tubes, the flattening/ovalization initiates at the 
loading point, gradually invading the entire cross section, 
leaving less material in the original shape (circular) to sustain 
load. The larger the cross-sectional shape change, the greater 
the decrease in I, and the less the ability to resist further flex-
ural force.

This also indicates that the changing cross-sectional shape 
to square, which provides higher flexural rigidity, can partially 
counterbalance the large reduction in I caused by the tapering 
of the shaft toward the distal free end to reduce profile drag,[4,24] 
save energy, and decrease the weight. This effect is demon-
strated analytically below.

2.2.2. Pure Bending

The ovalization of circular tubes, called Brazier effect[25] (degree 
of ovalization, ζ, Supporting Information, Section II), affects 
the bending rigidity. We present the change in area moment of 
inertia as a function of increasing bending moment and com-
pare it with experimental results on polypropylene (PP) tubes of 
various diameters (7.4–11.5 mm). At a given bending curvature, 
the measured degree of ovalization in the cylindrical tube is 

me
d b

d
ζ = −

	
(1)

where d is the measured original diameter and b is the meas-
ured minor axis of the ovalized cross section (vertical height) of 
the tube. The corresponding area moment of inertia is 
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where a is the measured major axis of the ovalized cross section 
(horizontal dimension) of the tube. Figure 4c shows plots of ζme 
versus bending curvature (=diameter × curvature) of represent-
ative tubes. With increasing bending curvature, tubes show an 
increasing degree of ovalization (Figure 4c), and an associated 
decreasing area moment of inertia (Figure 4d).

This ovalization can also be theoretically calculated; upon 
bending, ovalization minimizes the total strain energy of the 
system. Thus a theoretical degree of ovalization is[26]
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where κ, r, and t are the bending curvature, original radius, 
and thickness of the tube, respectively, and ν is Poisson’s ratio 
of the material. The theoretical area moment of inertia can be 
obtained as a function of the degree of ovalization[26]
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where ζth is calculated from Equation (3). The theoretically 
calculated degree of ovalization and area moment of inertia as 
a function of bending curvature are overlaid on experimentally 
measured values in Figure 4c,d.

There is good agreement. The calculated degree of ovaliza-
tion of all types of tubes, with increasing bending curvature, 
increases monotonically, and agrees with the experimentally 
measured values. For the area moment of inertia, both the-
oretical and experimental values decrease with increasing 
bending curvature. The theoretical area moment of inertia 
versus bending curvature closely reflects the experimental 
results. The measurements and calculations demonstrate 
the intrinsic deficiency of a circular tube in maintaining the 

original area moment of inertia, thus deteriorating the flex-
ural rigidity.

This theoretical ovalization can be used to determine theoret-
ical flexural load–deflection curves for the circular PLA tubes in 
three point bending. An expression for the bending curvature 
as a function of the deflection at the center point is derived as 
(Supporting Information, Section III) 

16
2L

κ δ=
	

(5)

For each measured δ (deflection), using Equations (3), (4)  
and (5), we obtain the theoretical area moment of inertia  
Ith, δ; substituting this expression into the equation for a center-
loaded beam (Equation (S6) in the Supporting Information, 
Section III), the flexural load is calculated. The plot is labeled 
“theoretical” and presented in Figure 4a; the curves are below 
the measured values for circular tubes but show the same trend 
as experiments. These calculations demonstrate that the square 
hollow tube provides a greater rigidity, normalized per weight, 
than the circular one.
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Figure 4.  Flexural behavior of hollow tubes. Square tubes show linear flexure load versus deflection response, whereas circular ones show curves with 
lower slope (flexural rigidity over L3) and undergo ovalization of cross section with increasing loading, leading to a decrease in area moment of inertia 
and corresponding decrease in rigidity. a) Flexural load–deflection curves of the 3D-printed PLA tubes with circular and square sections, overlaid 
with theoretical calculated curves of circular tubes considering ovalization; b) photograph of the fractured surfaces of circular and square PLA tubes.  
c) Measured degree of ovalization versus bending curvature (dimensionless) for PP hollow cylindrical tubes in pure bending, and d) measured area 
moments of inertia versus bending curvature (dimensionless); overlaid plots in blue are from theoretical calculations.
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2.3. The Layered Fibrous Structure of Cortex

The second focus of this contribution is to reveal and under-
stand the changing arrangement of the fibrous keratin in the 
father shaft, and to augment the knowledge from previous 
reports.[3,5,17] The feather cortex can be considered as a fiber-
reinforced composite: at the nanoscale, it consists of crystalline 
β-keratin filaments (≈3 nm in diameter) embedded in amor-
phous matrix proteins[22]; both compose macrofibrils (≈200 nm 
in diameter), which are surrounded by amorphous inter-mac-
rofibrillar material. These two components further organize 
into fibers (3–5 µm in diameter) which are often seen in frac-
tured rachis under a scanning electron microscope (Figure S3, 
Supporting Information).

The cortices of both seagull and crow feathers show a com-
plex layered structure composed of differently oriented fibers 
along the shaft length, which correlates to the mechanical func-
tions changing from the calamus to the distal rachis. Sectioning 
and polishing reveal the layers. At the calamus, the entire 
cortex (dorsal, lateral walls, and ventral regions) of seagull 
feather consists of a thin outer layer and a thick inner layer. At 
the proximal rachis, the dorsal region of cortex shows a thinner 
outer layer and a thick inner layer, but toward the lateral walls 
the outer layer gradually disappears with only one layer present 
(Figure 5b-lateral). The ventral region shows a uniform single 
layer (Figure 5b-ventral). At the distal rachis, no outer layer is 
observed for the entire cortex. The crow feather shows similar 
features, seen in Figure S4 of the Supporting Information.

Fracture of the feather cortex along the dorsal, lateral, and 
ventral longitudinal sections reveals the orientations of the 
aligned fibers along shaft length (Figures 6 and 7). At the 

calamus, the entire cortex exhibits a thick inner layer composed 
of longitudinally (axially) oriented fibers and an outer layer of 
sheets of circumferentially aligned fibers, shown in Figure 6.  
These layers restrain the axial fibers from separating and 
prevent axial splitting in flexure. Interestingly, it is a strategy 
commonly used in the design of synthetic composites. At the 
proximal rachis, the dorsal cortex shows a thick inner layer of 
axial fibers covered by circumferential fibers, which are at an 
obtuse angle to the shaft axis; the ventral cortex is composed 
of solely axial fibers. The lateral walls, made visible by freeze-
fracture, consist of crossed-lamellae (Figure 7). At the distal 
rachis, where only one layer is present in the cortex, the dorsal 
and ventral regions are all composed of axial fibers while the 
lateral walls consist of crossed-lamellae, which are indicative of 
crossed-fibers (Figure 7). The crow feather shaft cortex shows 
the same fibrous structure (Figure S5, Supporting Informa-
tion). This cross-lamellar structure is important in tailoring 
the lateral rigidity, which is much lower than the dorsal-ventral 
rigidity. The fibers, being at angle to the longitudinal axis, can 
flex in compression and slide in tension, thus creating a desir-
able decrease in lateral rigidity. This is yet another fascinating 
aspect of the anisotropic rigidity of the flight feathers.

The increase in axial fibers and decrease in circumferential 
fibers are important to the flexural properties of feather shaft. 
The flexural rigidity is the product of I and the longitudinal 
Young’s modulus (E).[27] The latter is determined by the local 
fibrous structure. As the shaft bends, the cortex at calamus 
(circumferential fibers enclosing axial fibers) provides robust 
mechanical support. Cameron et al.[17] reported a higher value 
of E toward the rachis tip due to a higher proportion of axially 
aligned fibers. Here we confirm that in the dorsal and ventral 
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Figure 5.  Change in keratin fiber orientation along shaft length (seagull). Transverse sections of shaft along shaft length showing the layered structure 
from seagull. Note central figures not in proportion. a) At the calamus, the dorsal, lateral walls, and ventral regions all clearly show a thin outer layer 
and a thick inner layer. b) At the proximal rachis, the outer layer exists in dorsal region but becomes thinner and disappears in lateral wall, and only 
one layer is present in ventral region. c) At the distal rachis, the entire cortex, including dorsal, ventral, and lateral walls, shows only one layer.
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Figure 6.  The fiber orientations in the cortex at the calamus. Scanning electron micrographs of the longitudinal sections at the different cortical regions 
from seagull feather: the dorsal, lateral, and ventral regions all show a thick inner layer formed by axial fibers and an outer layer of circumferential fibers 
(the view is looking from the internal surface of the cortex).

Figure 7.  The fiber orientations in the cortex at the proximal and distal rachis. Scanning electron micrographs of the longitudinal sections at different 
cortical regions: at the proximal rachis, the dorsal region shows an inner layer of axial fibers and an outer layer of circumferential fibers, whereas the 
lateral walls show crossed-lamellae and the ventral region exhibits only axial fibers. At distal rachis, both the dorsal and the ventral region are composed 
of axial fibers, and the lateral walls of crossed-lamellae. The crossed lamellae are indicative of a crossed-fiber structure.
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cortices the amount of axially aligned fibers increases, which 
leads to a higher E of rachis toward the distal end; thus, again, 
compensating for the decrease in I due to the reduced material 
to ensure necessary flexural rigidity.

The entire lateral cortex of both rachises consists of crossed-
lamellae, which are formed by crossed fibers (directly observed); 
they can provide necessary dorsal–ventral flexibility and prevent 
damage to the feather shaft. During bending, the dorsal and 
ventral cortex provide stiffness, while the lateral walls allow the 
shaft to flex with desirable strain under loading, thus delaying 
the onset of buckling and failure.[18] Besides, the crossed-fibers 
structure may be a key in limiting damage from barbs. The 
barbs, carrying arrays of hooked barbules, anchor to the rachis 
at the lateral walls and generate larger displacements [28,29] and 
multi-directional stresses. A crossed-fiber structure is more 
robust in sustaining the displacements and resists the stresses 
better than axial fibers, which are anisotropic and would be 
prone to split.

Additionally, the crossed-fibers can enhance the torsional 
rigidity, thus controlling twisting during lift or strike. The 
crossed-fibers are aligned 45° to the shaft axis, the same orien-
tation to the largest stress in which the material will fracture/
split under torsion.[30] At the same time, this torsional rigidity 

is complemented by the axial fibers in the dorsal and ventral 
cortex and the cortex shape, which facilitate twisting. Twisting 
lowers the bending moment before causing local buckling of 
thin-walled cylinders[5,31] and dissipates energy to avoid perma-
nent damage. Therefore, the crossed-fibers in the lateral walls 
and the predominant axial fibers covered by a gradual decrease 
of circumferential fibers in the dorsal and ventral cortex work 
synergistically to provide optimized mechanical functions to 
the shaft.

As a fibrous composite, the superior mechanical properties 
of the feather cortex are in the fiber direction.[32,33] As keratin 
proteins are cross-linked intracellularly[34] and there is no evi-
dence that the filaments pass through the cell membrane 
complex,[35] a possible length of a β-keratin filament and a 
macrofibril would be the cell length (20–50 µm); therefore, the 
β-keratin filaments, macrofibrils and fibers are long compared 
with their width,[35] and the mechanical behavior is close to that 
of a composite with continuous fibers.[35,36]

Nanoindentation was used to interrogate the fibrous struc-
ture. There are subtle changes which correlate with the orien-
tations of the keratin fibers along the shaft length; there are 
also changes from the dorsal to the lateral and ventral regions 
of cortex, consistent with the observed fiber alignment. The 

Figure 8.  Structural model of the feather shaft cortex: a) the shape factor. The cross section changes from circular at the calamus to near rectangular at 
the rachis. The layered structure of cortex with varying and differentially oriented fibers along shaft length: b) at the calamus, all the cortex is composed 
of a thin outer layer of circumferential fibers and a thick inner layer of aixal fibers; c) at the proximal rachis, the dorsal cortex consists of a thinner outer 
layer of circumferential fibers covering axial fibers, the lateral walls of crossed fibers and the ventral cortex of longitudinal fibers; d) at the distal rachis, 
the dorsal and ventral cortices are composed of axial fibers and the lateral walls of crossed fibers.
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results, shown in the Supporting Information, Section VI, con-
firm the complex nature of the cortex, where fiber alignment 
maximizes rigidity and failure resistance.

3. Conclusions

The current findings of the feather shaft cortex involving a 
cross sectional shape change and a complex layered fibrous 
structure along the shaft length to fulfill the flight functions are 
illustrated in schematic fashion in Figure 8: 

•	 Shape factor: The cross section of cortex changes from circu-
lar at the proximal (calamus) to rectangular toward the end 
(distal rachis), with significantly thickened dorsal and ven-
tral cortices. This provides higher bending rigidity per unit 
area and increases the ability to resist sectional shape change 
during flexure to retain the initial rigidity. The shape also al-
lows twisting under dangerously high loading, thus avoiding 
failure.

•	 Layered fibrous structure: At the calamus, the entire cortex 
shows a bulk inner layer of axial fibers covered by a thin 
(15%) outer layer of circumferential fibers. For the dorsal and 
ventral cortex, the outer layer becomes thinner as the axially 
aligned fibers gradually compose the entire dorsal and ventral 
cortex toward the distal rachis, whereas the lateral walls for 
the entire rachis show a crossed-fiber structure (Figure 8b).

•	 Synergy: The shape factor and fibrous morphology create a 
structure that is longitudinally strong, dorsal-ventrally stiff, 
and torsionally rigid, yet capable of prescribed deflection and 
twisting at a minimum of weight, modulated along the shaft 
length.

Such a natural design is ready to be reproduced, e.g., using 
3D printing or composite manufacturing techniques, and has 
potential engineering impact in applications such as manned 
or unmanned aerial vehicles.

4. Experimental Section
Materials: Flight feather shafts from a California gull (juvenile) and 

an American crow were used for structural analysis and mechanical 
testing. The feathers were obtained after the natural death of the birds 
and stored and studied at room temperature and humidity.

Structural Characterization: For optical microscopy, the feather shafts 
were cut into small cylindrical parts at different positions along shaft 
axis from proximal to distal end (numbered as 1, 2, 3, 4, 5, and 6), 
embedded in epoxy with transverse and longitudinal sections exposed, 
and polished using graded sand papers up to 2400# and finally polishing 
paste (0.3 µm aluminum oxides). For microcomputed tomography 
scan, transverse sections along the feather shaft were scanned with a 
scanner (Skyscan 1076, Kontich, Belgium) at 36 µm isotropic voxel 
sizes. Images were developed using Skyscan’s DataViewer and CTVox 
software. For scanning electron microscopy, transverse and longitudinal 
sections of feather shaft segments were obtained by cutting and folding 
or breaking at different positions along the shaft length, and then coated 
with iridium for observation. The lateral walls of feather rachis cortex 
were submerged in liquid nitrogen, manually fractured in longitudinal 
direction and coated with iridium. An Axio Fluorescence microscope and 
a Phillips XL30 environmental scanning electron microscope at Nano3 
facility at Calit2, UCSD, were used.

Nanoindentation: The feathers shafts cut into six cortex segments 
of ≈4 mm in height from proximal (calamus) to the distal end (feather 
tip). The segments were numbered as 1, 2, 3, 4, 5, and 6 representing 
their normalized distance from feather proximal point (see Figure 2a 
in main text). They were mounted in epoxy and the transverse sections 
were polished in the same way as for structural observation (graded 
sand papers and 0.3 µm polishing paste). Then the mechanical variation 
of dorsal, lateral, and ventral regions along shaft length (#1→#6) 
was investigated via indenting on transverse sections of the six cortex 
sections. In addition, mechanical variation along dorsal cortex thickness 
on transverse sections at positions #2 and #6 (representing the calamus 
and the distal rachis) was examined via indenting on dorsal cortex;

All specimens were placed in a fume hood for 2 d and stored in 
dry containers prior to testing. The specimens were fixed on a steel 
block using Super Glue and care was taken to ensure that the glue 
layer was thin enough to have minimal impact on material testing 
procedures. A nanoindentation testing machine (Nano Hardness Tester, 
Nanovea, CA, USA) and a Berkovich diamond tip (Poisson’s ratio of 
0.07 and elastic modulus of 1140 GPa) were used. All specimens were 
indented with 20 mN of maximum force, a loading and unloading rate of 
40 mN min−1, and 20 s of creep.

The hardness and reduced Young’s moduli were calculated from the 
load–displacement curves according to ASTM E2546 and the Oliver 
Pharr method,[37,38] which is installed in the Nanovea tester (Supporting 
Information, Section VII). A value of 0.3 for Poisson’s ratio of feather 
keratin was used according to the reported values of keratinous materials 
in the literature (0.25 for sheep horn[39]; 0.3 for fingernails[40]; 0.37–0.48 
for hair keratin[41]). An average of five consistent measurements for each 
position was reported.

Pure Bending of Circular Tubes: Three types of polymeric tubes (thin 
circular hollow straws) with different diameters and thicknesses were 
used. The elastic moduli of the straw materials were determined by 
cutting dog-bone shape pieces along the axis of the straws, gluing 
the ends in sand paper, and stretching the specimens in an Instron 
machine (Instron 3343). All straw materials have similar elastic modulus 
(≈1 GPa). The two ends of each tube were inserted by fitted tapered 
inserts, and the loads were applied downward onto the two distal ends, 
creating a uniform bending moment within the central region (Figure S1, 
Supporting Information). A camera captures images during bending to 
measure the height and width of the arc (bent tube); thus the bending 
radius is calculated to obtain the curvature (k). A digital caliper measures 
the dimensions of the cross section at the middle of the tube as loading 
increases (horizontal and vertical distances corresponding to major and 
minor axes of the ovalized cross section), so that the measured degree 
of ovalization (defined as ζ = δ/r; Figure S1, Supporting Information) can 
be obtained. At least three tubes for each type were tested and measured.

Three-Point Bending: 3D printed polymer tubes (PLA) with square and 
circular cross sections were used to study the underlying mechanical 
principles of the shape factor by flexural test. Both types of PLA tubes 
have the same wall thickness (2.54 mm) and cross sectional area. The 
external dimensions were 21 and 25 mm for square and circular tubes, 
respectively; the tube length was 203 mm. Figure 4 shows the flexural 
load versus deflection curves and a photograph of the PLA tubes, and 
the span length is 5.8 times the specimen depth. An Instron 3367 
equipped with 30 kN load cell was used, and all specimens were tested 
at room temperature at a nominal strain rate of 10−3 s−1. Calculations 
and plots were done using Excel and Origin 8.5.

Supporting Information
Supporting Information is available from the Wiley Online Library or 
from the author.
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