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2.1. DYNAMIC PROPAGATION OF DEFORMATION

The application of an external force to a body is, by definition a dynamic -
process. However, when the rate of change of the applied forces is low,
.one can consider the process of deformation as a sequence of steps in -

which the body can be considered in static equilibrium. Figure 2.1 shows
how the distance between the atoms changes upon the application of an
external force F. For each of the stages of deformation shown in Figs.
2.1(b) and 2.1(c), the body can be considered under static equilibrium

and one can apply the methods of mechanics of materials to determine
the internally-resisting stresses (by the method of sections). Hence, a

section made at AA or BB will yield identical stresses. 4
However, the internal stresses are not instantaneously transmitted

from the force-application region to the different regions of the body. The

stresses (and strains) are transferred from atom to atom at a certain

specific velocity. Figure 2.2(a) shows the application of a force at a rate
dP/dt such that the stresses (and attendant strains) vary from section to -
section. Section BB has not ‘seen’ the application of the force at time ¢,
while, at section AA, the separation between the atoms varies from point .
to point along the bar. One could establish a preliminary criterion for
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FiG. 2.1 Effect of application of force F on structure of solid (elastic deformation)
under quasi-static conditions.
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FiG. 2.2 (a) Wave propagation (elastic) in solid when rate of application of force
is high. (b) Stress versus distance showing propagation of a general disturbance
with velocity v.
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‘dynamic’ deformation by stating that it réquires a variation of stress
(from one end to the other) of 10 per cent. If the velocity of the stress
pulse is v and the length of the bar is I, one has, from Fig. 2.2(b):

F e (2.1)
v=-l- (2.2)
" ,
Equating t in eqns. (2.1) and (2.2):
g,—0, |
(2 3 )’ == @3
dt
The criterion of 10 per cent variation in o can be expressed as:
| 6,—0,<0.10,,, 2.4)
Substituting this into eqn. (2.3), one has:
do 0.1ve,
a—< l’"a’i (2.5)

This is, of course, a somewhat arbitrary criterion, but it establishes the
value of the rate of load application at which the ‘dynamic’ aspects or
wave-propagation effects become important. In the wave-propagation
regime, deformation is localized at the wavefront and release part and
the behavior of the material is not only quantitatively but also qualit-
atively different.

At an atomic level, one may envisage the wave as a succession of
impacts between adjacent atoms. Each atom, upon being accelerated to a
certain velocity, transmits its (or part of) momentum to its neighbor(s).

The mass, separation between, and forces of attraction and repulsion
of atoms determine the way in which the stress pulse is carried from one
point to the other. Of importance also is the stress state established by
the pulse, which determines the relative direction of motion of atoms and"
stress pulse, and the extent of motion of atoms. As a result of these
differences, one can classify the stress pulses into three categories: (a)
elastic, (b) plastic and (c) shock waves. Elastic waves produce only elastic
deformation in the material. On an atomic scale, all atoms return to the
original position in relation to their neighbors. There are two classes of
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elastic waves: longitudinal (or irrotational, dilatational, P) and shear (or
‘equivoluminal, transverse, distortional, S) waves. They travel at velocities
that are determined by their elastic constants. One may add a third class
of elastic wave to the two above: surface, Love, or Raleigh waves, which
travel at the surface. These are the commonly known waves propagating
in water. Elastic waves are treated in Section 2.2. When the amplitude of
the elastic wave exceeds a critical value for the yield stress of the
material, at that specific strain rate (and we know that the yield stress of
most metals is strain-rate dependent) the atoms undergo permanent
changes in position with respect to their neighbors: macroscopically, this
entails a change in the dimensions of the body. These are called plastic
(or elastoplastic) waves. Depending upon their nature, one may also have
plastic longitudinal or shear waves. These waves are treated in Section
2.3. If the geometry of the body is such that it allows a strain state called
‘uniaxial strain’, the propagation velocity of the plastic wave increases
with increasing pressure because there cannot be any lateral flow of
material (perpendicular to the direction of propagation of the waves).
The wave takes the configuration shown in Fig. 2.3(b): the sharp front is
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F1G. 2.3 Propagation of disturbances. (a) When U,<U, disturbance front slope
decreases with propagation distance. (b) When U,>U, ‘shock’ front forms and
remains stable.

}he characteristic that defines a shock wave. The shock waves are treated
in Section 2.4. The most simplified treatment (hydrodynamic theory) is
1ntro§uced first; then, some more contemporary considerations and
techniques such as attenuation of shock waves, method of characteristics,
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computer codes (incorporating the von Neumann-Richtmyer artificial
viscosity) are discussed (Section 2.5). The fundamental aspects of the
metallurgical effects of shock waves are discussed in Section 2.6. The
specific residual microstructural and mechanical effects of a number of
metals are treated in Chapter 3. o

The treatment of this chapter will be kept at a level consistent with the
‘engineering’ approach of this book. There have been significant ad-
vances in the theoretical treatment of disturbances in solids in the past
twenty years; these treatments, incorporated into computer programs,
have dramatically increased the predictive capability. In-depth studies of
disturbances in solids are numerous and the reader is. referred to
references 1 to 21, and 25 to 31.

2.2. ELASTIC WAVES

2.2.1. Introduction

Three types of elastic waves can propagate in solids: longitudinal (or
dilatational) waves, distortional (or equivoluminal) waves and surface (or
Raleigh) waves. A brief concept of these waves is given below.

(a) Longitudinal or dilatational waves. In longitudinal waves, the particle
.and wave velocity have the same direction. If the wave is compressive,
they have the same sense; if it is tensile, they have the opposite senses.

(b) Distortional or equivoluminal waves. In this case the displacement of
the ‘particles” and wave are perpendicular. There should be no change in
density and all longitudinal strains ¢, ,, &,,, £33 are zero.

(c) Surface waves. The most obvious example of this type of wave are the
waves in the sea. They only happen at interfaces. This type of wave is
restricted to the region adjacent to the interface, and ‘particle’ velocity
decreases very rapidly (exponentially) as one moves away from it. The
particles describe elliptical trajectories. The Raleigh wave is the slowest
of the three waves; the fastest is the longitudinal wave as will be seen
from the derivations that follow. When the elastic limit (or the critical
shear stress for plastic flow on the plane with highest Schmid factor) is -
reached, the elastic wave is followed by either a plastic or a plastic shock
wave, depending on the state of stress (uniaxial stress and uniaxial strain,
respectively.).
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2. 2 2. Elastic Waves in Isotropic Materials

Figure 2.4 shows a unit cube which is not in equ1hbr1um Consequently,
the stresses acting on opposite faces are not identical. Newton’s second
‘law can be expressed, in relation to the three axes, as:

Z Fxl =maX1,
Y. Fx,=max,, (2.6)
Y Fx3=maxs,

All stresses acting in the direction Ox, are represented in the cube. It is
considered that at the center of the cube (with dimensions dx,, 6x,, 6x3)
the stresses have the values of ¢;,, 65,, 033 (normal) and o,,, 0,3, 0,3
(shear). In the derivations that follow the symbols defined by Nye!4* will
be used.

A

/ ,o-"- ; g‘oj“-axl
/,4/ X
Op — =+ 9g Oxp — Zz 10 *liq'Lth
0%, L/ / 23x, 02
4>.
o ++ o s P> X
\
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FIG. 2.4 Unit cube when stresses vary from one face to the other; only stresses in
0x, direction shown.

The term 4 (8g,,/0x,)dx, expresses the change in a,,, with respect to
Ox,, as one moves from the center of the cube to one of the faces
perpendicular to Ox,. The other terms have similar meanings. So,
neglecting the effects of gravitational forces and body moments, one has,
in the direction Ox,:

1o 1éo
(Gll+§ a “(SXI 0’11 2 a 11 6x1)5X25X3
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180 100
+(012 +§—a—)§5x2 _0-12 +'2‘ axlzz 5x2>5x1 5X3
100 106,53 .-
+(_613+'2“a—x‘1‘3—3'5X3"'0'13+5 axlj 5X3)5x15x2

0%u

= pox,0x,0x, —6t—2‘-

u; is the displacement in the direction x;. The derivations that follow are
based on Kdlsky’s! and Rinehart’s? presentations. A similar account is
givén by Wasley.!? So:

" Oo 0o Co
: axlll 8x, 0x, 5;3 + ax‘; 8%, 6%, 0x4 +’af.‘5"l 0%, 0x5
%x,
=p5x1 5x2 5X3 atz
For the other eqns. (2.6):
60'“+50'12 60’13_: 52u1.
0x, 0x, 0x, ot?’
60,y 003y  Cay3  O%u,
&, ox, Tox, P
Cayy N 8oy, 0Coss —) 62123;
O0x; 0x, Oxj ct
In dummy suffix notation
doy; 0%
e -7

The solution of this system of differential equations will yield, once the
stresses are replaced by strains, the equations of the wave. For an
isotropic material, the calculations are simplified. There are only two
independent elastic constants instead of 36. One has, for an isotropic
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material:.
Ci12=Cy3 '_'Cz::s'="1
Caa=Css=Ces=u
C11=Cy,=C33=4+2p 2.8)
| Ci14=Ci5=C16=C24=C35=C36=C34,=Cs; =C36
=C45=Cs6=Css =0
Notice that the stiffnesses are represented by their matrix notation and
not by their tensor notation. So:
01y =2A+2ueyy,  Gr3=2per3, 0y =2A+2ues,,
013 =2/€3, O12=2Ue;;,  033=7A+2ues; 2.9)
2 and p are Lamé’s constants and A is the dilatation: A=g;, +&5, + €33
Replacing the values of g;; in eqns. (2.6) by their values in eqn. (2.9).
2

0%u,

0 0 5
-—(;-A+2#811)+—-—(2#812)+-‘§;(2y813)=p—6?'

Py
axl X4y

Ce Oe Ce 0%u
2 11 12 13 — 1
Pox, Hax, THex, Pae

But, from the definition of strains, one has:

) ) ) a a

ou, 1/Cu; Cu, 1/Cu; OCuy
€11 =% g1==|5s—+ and & 3==({—+—
1 ox, 2 2<6x2 ox, 37 2\ox;  ox,

So
5 62u1+ 62u1+ o%u, N 62u1+ d*uy | OMA  OPuy
‘ P Tz Y Haax, THax T Haxiox,  ox, L e

We will define the operator V2 as:

0 5 7
Vi= .
5x%+6x§+6x§ (2.10)
So
oA oA 0%u 02u 0%u 0%u
! A 1y uv? 3 =1
o, e, T e T R e ek ox, o
and
oA 0%u
A4 ) —+uV3u, = L .
(ot 1)+ 9y =p 5 @.11)
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Repeating the procedure for -the other two eqns. (2.6):

oA 0%u

A+ u) + uViu,=p at; (2.12)
A 0%u

A+ ,u) + uV3iu, = 5t23 (2.13)

Still, the displacements have to be replaced by strains and the three
equations have to be grouped into one. For this, we take the derivative
with respect to x; of eqn. (2.11), with respect to x, of eqn. (2.12), and
with respect to x; of eqn. (2.13).

oA o d3u,

CHugz 2+”6 Viu patzaxl
82A zau, d%,,
lapl it 14
U+#) +HV %, P2 (2.14)
2A d%e,,

(7+#) +#V g=p 77

Repeating the procedure for eqns. (2.12) and (2.13):

02A 0%¢
(A+u) + pv3e,, =p 5 —22 (2.15)
62A 0%ey, ,
] 2.
(24w 2 =P (2.16)

Adding eqns. (2.14), (2.15) and (2.16):

0
(A+W V2 A+uV3(e;, +e,, +333)=P5t'2—(811 +&5,+£33)

and
52A
(+20VA=pog
or
2
{f:(“z“)m @17)
at P :

A dimensional analysis shows that the units of the coefficient (A+2u)/p are
(distance/time)®. A closer comparison with equations of waves given in
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basic textbooks shows that: -

1/2
V.. = (ﬂ> (2.18)

ong ~ P)

If one assumes that v=0.3, one obtains

1.35E\!/2
o p

Indeed, Kreyzig?? has obtained the following. equations for one-
dimensional (vibrating string) and two-dimensional waves: .

62 a2
—2=C? ‘;:; (for 1-D wave) (2.19)
1
62
- I;=C2V2u
ot

The elimination of A between eqns. (2.11) and (2.12) yields the shear
wave. For this, we differentiate eqn. (2.11) with respect to x, and eqn.
(2.12) with respect to x,:

From eqn. (2.11)

82A 8 &3u,

Viuy=p—s .
G5 THa TP e (220)
From eqn. (2.12)
02A o _, d3u,
A+ 1) 0x, 0%, +”6xlv "Z“paxlaz (2.21)
6% (Ou, ©&u, Cu; Cu,
— - |=uV? | — = .
P e <5x2 axl) # (axz 0x, 222)
But, by definition, the rigid body rotations are given by:
And hence,
012 _H g2 012 (2.24)



PROPAGATION OF STRESS WAVES IN METALS , 27

Thus, the rotation ,, propagates at the velocity (u/p)'/2. The same
procedure can be repeated to obtain rotations w,; and w,;.

Vshear = (.u/p)llz (225)

For the treatment of the surface waves the reader is referred to
Kolsky.! For steel (v=0.29) a calculation reported by Kolsky' shows the
velocity is:

.VRaleigh = 09258 Vshear

Typical velocities of longitudinal and shear waves are reported in
Table 2.1.

TABLE 2.1
VELOCITIES OF ELASTIC WAVES
Material Viong(Mm/sec) V pear(m/sec)
Air 340 None
Aluminum 6100 3100
Steel 5800 3100
Lead 2200 700

2.2.3. Elastic Waves in Anisotropic Media )

In anisotropic media the situation complicates itself. Because defor-
mation mechanisms operate on a microscopic scale, and because metals
are, on a microscopic scale, anisotropic, wave anisotropy should be
understood. The derivation of wave velocities for crystals exhibiting

cubic symmetry is presented by Ghatak and Kothari® and is summarized
here.

When eqn. (2:7) is substituted into eqns. (2.4), the stiffnesses of cubic
symmetry have to be used. In a cubic crystal, there are three independent
elastic constants: C,,, C,, and Cy,.

So
01 =(C11—Cy2)e; +Cy,(e; e, +&3)
02,=(C11—C12)e2+Cy,(&, +&,+¢3)
03=(C1;—Cy2)e3+Cy,(e, +&3+¢3) .
04 = C4484 - ) - (2.26)
05 =C4€s |

06 =Caats
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‘We should remember that

ou. u\
8m=2si,-=<—u‘-+fﬁ) (2.27)

So, we have

| 0%u
Ciy—Cy) 22
( n 12) ax% +C12(ax% axl 5x2 axl +6X3

(6%u, 0%, 0P o%u o%u
+ C ! 1 3 — 1 .
‘f(ax% o2 toxam, o) P )

5211‘ 52u2 52u3 >

and two other, similar equations.
- We now have to group these three equations into one, and at the same
time eliminate the displacements u,. By making the following sub-
stitution:
u,=Aexp(—ij(wt—qv)) (2.29)

we are assuming that we have a plane wave with angular frequency w;
the wave vector is q-ij should not be confused with i. ij is the imaginary
number. We end up with a set of three homogeneous equations, whose
solutions are given by the secular equation or determinant below.

(Ci1—Cas)gi+Caud® —pw*(Cy5+C14)9192(C12+ Cas)d193
(Cy12+C4a)d291(C1y —Cas)a3 +Casq® — pw*(Cyy+Cua)d2q5 | (2.30)
(C12+ Cas)4391(C12+Cas)4295(C1y —Caa)qi + Caug® — po’ -

We have g>=q?+q3+43
~ Wecan determine the solution of this equation for certain orientations
of the wave, e.g.

(a) [100] g, =4, 4;=0=gq;

(Cqu__pwz)(C“qz__pwz)z___0’ Cuqz—sz =0,
and C,eq*—pw? =0 (2.31)
The following are solutions:

o ,
U, = E = (Cu/P)l/z’ and U,= U3=(C44/p)1/2 (2.32)

The ratio w/q is the velocity of the wave. (See eqns. (2.34) in ref. 3) U, is
the longitudinal wave; U, and Uj are the shear waves.
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(b) [110] For this orientation of q, we have g, =q,=g/ \/3; g5 =0.
The secular equation becomes:

(Csed® —p00?) [(%C‘ 197+ C44q” —p0?) 3C116% + Coag® — po?)
4
—(C11+Cud) (Cyy + C44)q7] =0 (2.33)

This equation accepts the following solutions:

C449* —p? =0, Us=(Css/p)''? (2.34)
4

3C119% +Cag® —p?)? = (Cy; +Cua) (Cyr + C44)qz =0
1C3 g%+ Clug* — p*0* + Cy, Cuuq* — Cy p®q?
4
—2C44p0?q* = (Cyy +Cas) (Cy + C44)% =0 (2.35)

Dividing by g* the two solutions are:

1/2 _ 1/2
U1=(C“+CZ‘;+2C“) , and U2=(——C“2pc’2> (2.36)

Where U, is the longitudinal wave, U, is the shear wave with vibration
along the x;, x, axes, and U, the shear wave with vibration along the x,
axis. '

(c) [111]
We find that
Ul = ’
3p
and,

2.37)

0,0, (GGt Cu)

3p
It is interesting to observe that, if a material is isotropic, the velocities

of the waves reduce themselves to the ones calculated for isotropic
materials. An isotropic material has the anisotropy ratio equal to 1

| 2Cas

A=1=—""%%
- Cll—CIZ
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therefore . _
_Ci11—Cys
C44 - 2
Substituting this into eqns. (2.32), (2.34), (2.36) and (2.37), one obtains:
U,[100]=U,[110]=U,[111]=(C,,/p)'"? (2.38)

U,[100]=U,[100]=U,[110]=U,[110]
=U,[111]=U,[111]=(Cy4/p)'* (2.39)
Lamé’s constants have the following values:
Caa=u, Cio=4 (2.40)

So C;;=2C44+C;,=2u+A. Consequently, egns. (2.38) and (2.39) re-
-duce themselves to:

2y+l)”2 (Il)l/z
Uy={\——] , U,=|- 2.41
1 ( P 2=\, (2.41)

These are, in fact, eqns. (2.18) and (2.25).

An idea of the dependence of elastic wave velocity upon orientation for
an FCC metal can be obtained from the calculations performed by
Meyers and Carvalho.?3
" For Ni, at ambient temperature (ref. 3): (p=8.9)

C, =2508x10'' Pa, C,,=1.500x10'! Pa, C,,=1235x10'! Pa

Hence

Upyooy=3-31x10* m/sec, ~ Upy,4,=6.03 x 10> m/sec,
Upy11,=5-80 x 10 m/sec

2.3. PLASTIC WAVES

2.3.1. Preliminary Considerations

Every plastic deformation propagates within a solid as a disturbance in
the same way as elastic deformation. However, when the rate of appli-
cation of the load is low with respect to the velocity of propagation of
the disturbance, one can consider the plastic strain as uniformly distri-
buted over the whole extent of the solid body (at the macroscopic level,
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because microscopically plastic deformation is inherently inhomo-
geneous). The velocity is given by:

d 1/2
v~(—£-) ) (2.42)

The work hardening rate is lower than Young’s modulus. For the
uniaxial stress configuration, do/de decreases with e. This, in turn will
produce a plastic wave whose velocity decreases with strain. Hence, the
wave front will have a lower and lower slope as it propagates through
the metal (Fig. 2.3(a)). If no lateral flow of material is allowed (flow
perpendicular to the direction of propagation of the wave), the stress—
strain curve takes a concave appearance (in contrast to a convex shape
for uniaxial, biaxial, and similar stress states). The Hugoniot pressure
versus volume curve can be converted into a stress versus strain curve
- (Fig. 2.8(b)) where the increase in slope with strain can be seen. This
configuration defines the shock wave, which will be treated separately in
Section 4. It is seen that between the state of uniaxial stress established in
a thin wire and the state of uniaxial strain set up in an infinite (laterally)
plate, one has a whole spectrum of stress regimes, leading from a gently
sloping stress front to a discontinuous shock front. In the former case the
hydrostatic component of the stress is zero; in the latter, it is very high
(as high as allowed by the uniaxial strain).

Although one can consider the plastic waves to be of a pure shock
nature in carefully controlled shock-loading experiments, explosive for- -
ming, welding and compaction present a mixture of these waves. In
explosive forming, one has plastic waves propagating along the sheet;
shock waves could only exist while passing through it. Nevertheless, this
would require simultaneous arrival of the shock front over the whole
surface of the sheet, which is not the case. In shock-wave compaction,
one can distinguish two regions: (a) the core of the particles, which do
not undergo any macroscopic deformation and are consequently sub-
jected to a shock wave, and (b) the particle periphery, which is formed in
such a way as to fill the gaps between particles. Figure 2.5 shows how a
shock front compacts initially spherical particles. There has to be a
continual (plastic wave)ss(shock wave) conversion as the wave travels
through the system. The regions undergoing residual plastic deformation
are responsible for a dispersion of the wave. Additional complications
are the friction between particles. The increased attenuation rate of the
plastic wave (resulting in increased heating) contributes significantly to
the interparticle bonding. Melting often occurs at the interfaces.
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F1G. 2.5 Propagation of disturbance in metal powder producing consolidation.
Only the internal portion of particle undergoes a shock deformation. External
portions suffer heavy residual deformation and are traversed by plastic waves.

2.3.2. The von Kiarman and Duwez Plastic Wave Theory

Von Kirmén and Duwez,® G. I. Taylor3? and Rakhmatulin®?® indepen-
dently developed the theory of plastic waves. The von Karmén and
Duwez treatment is presented here. Two frames of reference used when
dealing with disturbance-propagation problems are: (a) Lagrangian,
when one considers a particle in the material and observes the change of
position of this particle with time; and (b) Eulerian, when one considers a
certain region in space and observes the flow of material in and out of it.
Hence, a property F, which varies with time, spatial position (X) and
particle position (x), can either be expressed as:

F=f(x,t), or F=f(X,1) (2.43)

These two approaches will be discussed again in Section 2.5, in con-
nection with numerical methods of solution.

Von Kéirméan and Duwez considered the simplest possible plastic wave
propagation problem: a semi-infinite thin wire being impacted at a
certain velocity generating a downward motion at a velocity V;. The
initial position of the extremity of the wire is taken as the origin, and we
observe the displacement of a particle situated at the position x. At time
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¢, it will be displaced by u. Hence

0%u 0%u
dF=dm—5t—2 = pOAO dxa—tz-
therefore
do c%u
L Poaz (2.44)

where p, and 4, are the initial density and area, and o is the stress. Since
we have a state of plastic deformation, and assuming that one has a
univalent relationship between stress and strain in loading (not in
unloading because of the irreversibility of the process), one can write,

c%u _do de
Po o2 de ox

. .and with ¢=0u/0x, we have

02u 1 ded*u
5o deon (245)

One can see the similarity with eqn. (2.19). The velocity of the plastic
wave can be seen to be given by

1 do\!'?
Gree)

and the comparable elastic wave velocity can also be determined.**3*
The application of the boundary conditions allows the determination
of the wave profile. The boundary conditions are

u=Vtat x, =O, and u=0atx=00 (any t>0)
There are two solutions to eqn. 2.45. The first (found by inspection) is
u=Vt+ex
A second solution is found when
&)
de x\?
Po =(?>

do/de being a function of &, the strain ¢ has to be a function of the
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velocity x/t, which we will call 8

x au x B
u=J 5;dx=f f(ﬂ)dx=tj J(B)dpg (2.46)
Differentiating twice with respect to t, we get:
azu 2 ! .
ol Tf (B) (2.47)

where f'(f) is the derivative of f(f) with respect to f. This leads to the
following solution: v

(@) x=0 to x=Ct (C is the velocity of propagation of the plastic
wavefront); the strain is constant at ¢;.

(b) Ct<x<Cyt (C, is the velocity of elastic longitudinal waves in
bars). In this interval, one has:

/2
3:-= <d‘;/o ds)l (2.48)

(c) x>Cqt, e=0.

Figure 2.6 shows graphically how the strain varies as a function of x/t.

A

e _~ELASTIC WAVE FRONT

PLASTIC WAVE
~~ " FRONT

€ -

STRAIN, €

F1G. 2.6 Strain versus x/t for disturbance propagating in wire (adapted from von
Karman and Duwez®)
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From eqn. (2.46) for u(0,t)=V;t, we have |
£] 1/2
V= —f (da/ d8> de (2.49)
0 Po

For a known impact velocity and a known ¢ versus ¢ relationship, one
can determine & Assuming a power law:

k n
o=ke", V=4 (2.50)
Po

V 1/n
g, =("‘;{ ‘) 2.51)

The maximum impact velocity can be easily found by setting it equal to
the velocity that will produce necking on the specimen. Applying
- Considére’s criterion e=n,

and

V1= —(kn"/po) (2.52)

2.3.3. Plastic Shear Waves

One can have plastic shear waves, in an analogous way to elastic shear
waves. The particles undergo plastic displacement perpendicular to the
‘direction of propagation of the wave. It is very difficult to generate
exclusively plastic shear waves, and a wave in a rod would be a plastic
shear wave; however, the amplitude of motion would vary with the
distance from the longitudinal axis of the rod. Hence, it is easier to
generate a plastic shear wave simultaneously with a longitudinal stress
wave. For the mathematical treatment of plastic shear waves see re-
ferences 32, 36 and 37. However, it is Clifton’s group?*27-3° that has
investigated them—both experimentally and theoretically—in greater
depth. Using a parallel inclined impact of a projectile with a target, it is
seen that the impact generates a pressure wave moving perpendicular to
the interface and a shear wave, producing lateral displacement, also
moving perpendicular to it. Measurement of the lateral displacement
determines the rate of arrival of this shear disturbance at the back face of
the target. Figure 2.7 shows the transverse displacement as a function of
time after impact for 6061-T6 aluminum. It can be seen that the slope of
the line is constant over the interval. Hence, the shear wave differs from
a shock wave in the gradually increasing front. For the situation an-
alysed,?%+2% the velocities of the pressure front and shear front are 5.24
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FIG. 2.7 Experimental results obtained by Abou-Sayed et al.?’

and 3.10 mm/us, respectively. Hence, the plastic shear wave has a velo-
city slightly higher than half the plastic pressure (shock) velocity.
This is about the same ratio as the one obtained between shear and longi-
tudinal elastic waves. Plastic shear waves are certainly of great import-
ance in dynamic deformation.

2.3.4. Additional Considerations on Plastic Waves
The theory of von Karman and Duwez? is only the first step towards an
_understanding of plastic waves in solids. A considerable theoretical effort
has been devoted, over the past twenty years, to develop models for the
propagation of plastic waves. At the same time, it has been realized that
the hydrodynamic treatment of shock waves is over-simplified and fails
to predict a number of phenomena; even at high pressures strength
effects are of importance. A number of mathematical formulations have
been proposed incorporating the material properties by a constitutive
equation. These relationships are, for the most part, non-linear. Lee3®
developed a theory which he called elasto-plastic with finite deformation.
Hermann and Nunziato® divide the response into several categories,
depending on the wave-propagation characteristics, and analyse them in
terms of linear viscoelastic infinitesimal elastic-perfectly plastic, non-
linear viscoelastic, and thermoelastic, behaviors. Clifton3° and
Hermann,’ describe the analytical approach, and a recent report by the
National Materials Advisory Board*!' makes a critical analysis of the
state of the art and of the areas that need development.

An experimental technique that has been used often to obtain con-
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stitutive relations at high strain rates is the split Hopkinson bar. It is, in
its present form, a modified version of the bar originally used by
Hopkinson,*? Davies,*> and Kolsky,** who were responsible for its
development (see Chapter 4).

2.3.5. Adiabatic Shear Bands
Adiabatic shear bands are a common feature of dynamic deformation.
They are not generated by shock waves but have been reported in a
range of high-strain-rate deformation processes, such as ballistic impact,
high-velocity forming and forging, explosive fragmentation and machin-
ing. They consist of narrow bands where intense shearing took place and
the effect can be qualitatively explained as follows. Plastic deformation
generates heat. As the temperature of the deformed region increases, its
flow stress decreases. This leads to a concentration of the deformation
along that region, with further heat generation. This self-accelerating
process might lead to eventual melting. Morphologically, adiabatic shear
bands can be of two types: ‘deformation’ bands and ‘transformation’
bands. The latter ones are usually observed in steel, and etch as white
streaks in metal. It seems that their structure is different from that of the
surrounding material, and attempts (so far, unsuccessful) have been made
to identify it.*! It is composed of very small grain sizes (0.1-1 um). There is
evidence for four possibilities: ferrite (BCC), martensite (BCT), austenite
_(FCC), and an unnamed BCC phase with a lattice parameter smaller
than the normally encountered ferrite. It is certain that adiabatic shear
bands are present in high-energy-rate fabrication processes such as
explosive forming, welding, and even compaction. Virtually nothing is
known about the micromechanical deformation processes leading to
thermoplastic band formation. The mechanical aspects and requirements
will be very briefly reviewed here.

Zener and Hollomon®3 were the first to report these bands. They
suggested that they would form when the decrease in flow stress, due to
temperature rise, offset the increase in flow stress due to work hardening.
Recht, in 1964,%4 expressed this criterion in a more quantitative way,
starting from a simplified mechanical equation of state:

O. =f(8, T),

i éo do
do= (-0;8—>Td8 + (ﬁ)‘ dT

where ¢ is the shear stress, and & and T are the strain and temperature,
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respectively. Recht assumed that catastrophic (unstable) flow would
occur when do/de would become equal to zero; or:

co oo \ dT .
'(a_s>r=“(57)£5 (253)

He derived an expression for the increase in temperature with strain for
a narrow band of thickness ¢, in a block of thickness L, of the form:

dT o,L é
—= .54
de 2W[nkpc(s—sy):] 2:54)

where o, and ¢, are the stress angl strain of yield (initial), k is the thermal
conductivity, Wis the work equivalent of heat, c is the specific heat, and
p is the density. Substituting eqn. (2.54) into eqn. (2.53) one arrives at the
critical strain rate:

- a—
.

Jdo
oe )| W2

éo o} L?
oT),

More sophisticated criteria have been proposed but Recht’s analysis
seems to predict the correct trends. Additional work on adiabatic shear
bands is reported in references 85 to 88 and reference 21.
~ An interesting concept that was recently introduced®’ is wave trap-
ping. One can see from eqn. (2.48) that the wave velocity varies with the
square root of the work-hardening rate. Thus, when do/de—0, the plastic
wave should cease to propagate, and deformation will become localized. .
The authors would like to speculate on a mechanism for the formation
. of ‘transformation’ shear bands. These regions, also called ‘white streaks’,
would be due to localized melting caused by high levels of strain and/or
fracture. The solid metal surrounding the molten layer is an almost ideal
heat sink and, once the deformation is completed, would provide very
high cooling rates. Recent studies on rapidly-solidified metals*® show
that one has the following sequence of morphologies; as the cooling rate
is increased: microdendritic structure, microcrystalline structure and
amorphous structure. The microcrystalline structure requires cooling
rates of 10* K s™! or higher. Concomitant with melting, one would have
dissolution of the carbides; during subsequent solidification, there would
be no time for segregation and a supersaturated solution of carbon in
iron would result. This, combined with the extremely small grain size (of

&= 47zkpc(s —g)

(2.55)
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the order of fractions of a micrometer) would be responsible for the high
hardness.

2.4. SHOCK WAVES

Shock waves are characterized by a steep front, and require a state of
uniaxial strain which allows the build-up of the hydrostatic component
of stress to high levels. When this hydrostatic component reaches levels
that exceed the dynamic flow stress by several factors, one can, to a first
approximation, assume that the solid has no resistance to shear (G=0).
The treatment developed by Hugoniot and Rankine for fluids is com-
monly applied to the treatment of shock waves.

-2.4.1. Hydrodynamic Treatment

The calculation of shock-wave parameters is based, in its simplest form,
on the Rankine-Hugoniot****¢ equations. Essentially, it is assumed that
the shear modulus of the metal is zero and that it responds to the wave
as a liquid. Hence, the theory is restricted to higher pressures. At
pressures close to the dynamic yield strength of metals, more complex
computations have to be used. However, it will suffice here to derive the
equations for hydrodynamic behavior. The fundamental requirement for
the establishment of a shock wave is that the velocity of the pulse
_increases with increasing pressure. This is shown in Fig. 2.3(b). The
velocity of the front will be that of the particles subjected to the highest
pressure.

Ahead of the front, the pressure is P, and density p,; behind they are P
and p respectively. The velocity of the front is U,; the particles (or atoms)
are stationary ahead of the front. At the front and behind it, they are
moving at a velocity u,. This displacement of the particles is responsible
for the pressure build-up. If one considers the center of reference as the
shock front and moving with it, and sets up the equation for the
conservation of mass, one has: material moving towards front: Ap,U,dt,
material moving away from front: Ap(Us—uy)dt. Hence

poU,=p(U,—u;) (2.56)
The conservation of momentum can be expressed likewise..
Unit impulse =(momentum in-momentum out)=(po U, dt A)u,,

Where poU,dtA is the mass, while u, is the particle velocity change. The
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impulse is
' (Po—P)dtA
Hence Al
(P—Po)=pou,U, 2.57)

The quantity pou,Ug is usually called the shock impedance. The
conservation of energy is obtained by setting up an equation in which the
work done is equal to the difference in the total energy of the two sides.

Adt(Pu, — Py x 0)=1/2mu? Adt + mAdt(E — E,)
Pu,=1/2po U,uZ +po U(E — Eo) (2.58)

where E and E are the internal energies.
However, since there are five variables in eqns. (2.56) to (2.58) an
additional equation is needed. This fourth equation is experimentally

determined and is given as a relationship between shock and particle
velocities.

U,=Co+5,u,+85,u (2.59)

S; and S, are empirical parameters and C, is the sound velocity in the
material at zero pressure. For most metals S,=0 and egn. (2.59) is
reduced to

U,=Co+S,u, (2.60)

With the knowledge of the values of C, and S, for a given material and
applying eqns. (2.56), (2.57), (2.58) and (2.60), it is possible to calculate '
the required quantities. ‘

Figure 2.8(a) shows that U, versus u, curve for nickel; as expected, the
relationship is linear. By applying eqns. (2.56) to (2.58) one can plot the
pressure versus the volume (V/V;) (Fig. 2.8(b)), and versus the particle
velocity (up), as shown in Fig. 2.8(c). Specific information on the design of
shock recovery systems is given by deCarli and Meyers.?° Three good
sources of information are refs. 47 to 51.

The Mie-Griineisen-Debye theory is well known for its application in
a somewhat more refined treatment of shock waves. The Mie-Griineisen
equation of state is:

P=P,(V)+ NkTT(V)D(0/T)V +(2/3)aV =13 T2 (2.61)

where D(6/T) is the Debye function, I'(V) is the Griineisen parameter and
other symbols have their usual value.
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F1G. 2.8 (a) Particle velocity versus shock velocity for nickel (adapted from
Meyers*?). (b). Hugoniot curve for nickel (adapted from Meyers®3). (c) (overleaf)
Pressure versus particle velocity for mckel (adapted from Meyers®?3).
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F1G. 2.8 contd.

In order to obtain the pressure generated by an impact of a flyer plate
on a target plate at a known velocity, one plots the pressure, P, versus
particle velocity, u, for both materials and applies the impedance
matching technique, as described in reference 29. The equations required
to obtain the density (p), the compressibility ratio (V/V,), the shock
velocity (Uy), and particle velocity (u,) can be obtained by manipulating
the Rankine-Hugoniot relations (eqns. (2.56), (2.57), (2.58), (2.60)). The
coefficients in the empirical linear relationship between u, and U, are
taken from Table C-1 (ref. 21). The sound velocity C as a function of
pressure was obtained from eqn. (33) in ref. 52.

dpP yVo—V y| Py—P
2__ _y2-"Hiq«_770 " 27 H 0
C‘Vdv[lvz]wv[ > ]

+V?(P—P,) [12/+M] (2.62)

dav
The two derivatives can be evaluated and are:
dPy,  —p3Ch 25p3C3(1—poV)
dV  [1=S(1—poV)]* [1—-S(1—poV)]3

(2.63)
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din (V5 (7 |
— ( > (V)/dV—— (2.64)

where y is the Grilneisen constant and Py is the pressure at the
Hugoniot. Table 2.2 presents the shock wave parameters for a number of
metals at the pressures of 10, 20, 30, 40 GPa. The values of y were taken
from ref. 52.

When the solid being shocked undergoes a pressure-induced phase
transformation, the P versus V/V, plot exhibits a discontinuity in the
slope. Figure 2.9(a) shows this effect for iron. At 13 GPA iron undergoes
an «(BCC)—¢(HCP) transformation. Upon unloading, the reverse trans-
formation does not occur at the same pressure, producing the hysteresis
behavior shown. Duvall and Graham®* have presented a comprehensive
treatment of shock-induced phase transformations. The velocity of the
shock wave is proportional to the square root of the slope of the Raleigh
line. The Raleigh line is defined as the line passing through the points
- (V/Vy,P) and (1,0). Two Raleigh lines R; and R,, corresponding to
pressures P, and P,, are shown in Fig. 2.9. One can see that the slope of
R, is lower than R,, although P, > P,. Hence, the wave will decompose
itself into two waves, as shown in Fig. 2.9(b).

The rarefaction—or release—part of the shock wave is the region
beyond the peak pressure, where the pressure returns to zero. The
attenuation of a wave, on the other hand, is the decay of the pressure
pulse as it travels through the material. Figure 2.10 shows schematically
how a shock wave is changed as it progresses into the material. At ¢,, the
wave has a definite peak pressure, pulse duration and rarefaction rate
(mean slope of the back of the wave). The inherent irreversibility of the
process is such that the energy carried by the shock pulse continuously
decreases. This is reflected by a change of shape of the pulse. If one
assumes a simple hydrodynamic response of the material, the change of
shape of the pulse can be simply seen as the effect of the differences
between the velocities of the shock and rarefaction part of the wave. It
can be seen in Fig. 2.10 that the rarefaction portion of the wave has a
velocity u,+ C, where u,, is the particle velocity and C the sound velocity
at the pressure. As the wave progresses, the rarefaction part of the wave
overtakes the front, because u,+C>U,. This will reduce the pulse
duration to zero. After it is zero, the peak pressure starts to decrease. As
this peak pressure decreases, so does the velocity of the shock front:
U,,<U,;<U,,=U,,. This can be easily seen by analysing the data in
Table 2.2. By appropriate computational procedures one can calculate
the change in pulse shape based on the velocities of the shock and



TABLE 2.2

SHOCK-WAVE PARAMETERS FOR SOME REPRESENTATIVE METALS (ADAPTED FROM

REF. 21)
Pressure ViV, U, u, o
GPa glem? km/s km/s km/s
2024 Al
0 2.785 1.0 5.328 0.0 5.328
10 3.081 0.904 6.114 0.587 6.220
20 3.306 0.842 6.751 1.064 6.849
30 3.490 0.798 7.302 1.475 7.350
40 3.647 0.764 7.794 1.843 1.774
Cu
0 8.930 1.0 3.940 0.0 3.94
10 9.499 0.940 4.325 0.259 4425
20 9.959 0.897 4.656 0.481 4.808
30 10.349 0.863 4950 0.679 5.131
40 10.668 0.835 5.218 0.858 5.415
Fe
0 7.85 1.0 3.574 0.0 3.574
10 8.479 0.926 4.155 0.306 4411
20 8.914 0.881 4610 0.550 5.054
30 9.258 0.848 4993 0.759 5.602
40 9.543 0.823 5.329 0.945 6.092
Ni
0 8.874 1.0 4.581 0.0 4.581
10 9.308 0.953 4916 0.229 5.005
- 20 9.679 0917 5.213 0.432 5.357
30 9.998 0.888 5.483 0.617 5.661
40 10.285 0.863 5.732 0.786 5.933
304SS -
0 7.896 1.0 4.569 0.0 4.569
10 8.326 0.948 4.950 0.256 5.051
- 20 8.684 0.909 5.283 0479 5.439
30 8.992 0.878 5.583 0.681 5.770
40 9.264 0.852 5.858 0.865 6.061
Ti ,
0 4.528 1.0 5.220 0.0 5.220
10 4.881 0.928 5.527 04 5.420
20 5.211 0.869 5.804 0.761 5.578
30 5.525 0.820 6.059 1.094 5.708
40 4.826 0.777 6.296 1.403 5.815
w
0 19.224 1.0 4.029 0.0 4.029
10 19.813 0.970 4.183 0.124 4.207
20 20.355 0.944 4.326 0.240 4.365
30 20.849 0.922 4.462 0.350 4.508
40- 21.331 0.901 4.590 0.453 4.638
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rarefaction portion of the wave. This is done below, in a very simplified
manner. In order to calculate the rarefaction rate of the pressure pulse as
it enters the material, it is best to use Fig. 19 of ref. 29. The rarefaction
rate is the slope of the wave tail. Although the curve is concave upwards,
we can, as a first approximation, assume it to be a straight line and
calculate an average dP/dt. The average rarefaction rate can be obtained
by dividing the peak pressure by the difference between the time taken
for the head and the tail of the rarefaction wave to pass through a certain
point. The head and tail of the rarefactions are shown and travel with
velocities u,+C and C,, respectively. If one wants to determine the
rarefaction rate at the collision interface, one has to find the difference
t3—t,. One should notice that when the flyer plate is under compression,
its thickness is po/p. Hence

ty—t,=1F (’-;‘1) <%) - zF(é) (2.65)

, dP g(Po 1\]7!
== pm[t <pc CO>] (2.66)

The rate of rarefaction is very sensitive to pressure. So, if either the
impact velocity or the flyer-plate thickness is changed, for the same target-
projectile system, different rarefaction rates will result.

The attenuation rate (or decay rate) measures the rate at which the
pressure pulse dissipates itself as it travels through the material. The
energy carried by the pressure pulse is dissipated as heat, defects-
generated, and other irreversible processes. Figure 2.10 shows schemati-
cally how the energy carried by the wave decreases as it travels from the
- front to the back face of the target. Up to a certain point the pressure
remains constant; it can be seen that at t; the pressure has already
decreased from its initial value and that at ¢, it is still lower. The greater
the initial duration of a pulse, the greater will be the energy carried by it,
and consequently, its ability to travel throughout the material. The
simplest approach to calculating the decay rate of a pulse is to assume
the hydrodynamic response of the material. As illustrated in Fig. 2.10 the
relative velocities of the shock and release waves will determine the
attenuation. The head of the release wave travels at a velocity u,+ C; the
distance that the peak pressure is maintained is given by the difference
between the shock velocity Uy and u,+ C. Hence: '

2
t,Ug

= P75 2.67
u,+C—U; (2.67)
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Beyond this point numerical techniques have had to be used to compute
the pressure decay. This can be done in an approximate way by drawing
the pulse shape at fixed intervals, assuming the shock-wave velocity
constant in each of them.

2.4.2. More Advanced Treatments and Computer Codes
The hydrodynamic theory refers only to pressures, since it assumes that
G =0 and that the material does not develop shear stresses. However, the
state of uniaxial strain generates shear stresses, and these cannot be
ignored in a more detailed account.

One can define the pressure as the hydrostatic component of the
strain:

E
=30=2y) %

Assuming that E and v are not dependent upon pressure, one has:

dpP

E

P=——
30—y

The maximum shear stresses can be obtained from the deviatoric
stresses, which are given with respect to their principal axes:

_o;—03 3(1-2v)

fmax = = o 1)

(2.68)

The derivation is given in greater detail by Meyers and Murr.>?

The recognition of the existence of material strength has led to a
number of proposals. Another great problem in the mathematical treat-
ment of shock waves is the discontinuity in particle velocity, density,
temperature and pressure across the shock front. The differential equa-
tions describing these processes are non-linear and trial-and-error com-
putations are required at each step (in time). For this reason, von
Neumann and Richtmyer>® proposed in 1949 a method for treatment of
shock waves which circumvented these discontinuous boundary con-
ditions, and, as a result, lent itself much better to mathematical com-
putations. In essence they introduced an artificial viscosity term. This
artificial viscosity term had the purpose of smoothing the sharp shock
front and rendering it tractable in differential equations and finite
difference techniques. The shock front was made somewhat larger than.

- the grid in the finite element network. The physical explanation for the
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introduction of a viscosity form>® is reasonable: dissipative mechanisms
take place at the shock front and they can be represented by a math-
ematical viscosity term. Hsu et al.°® studied in detail the specific
dissipative mechanisms. These are discussed in the next section. The
artificial term used by von Neumann and Richtmyer®® was:

-
C U,

0

__[(cAx)? éu,
- V ox

(2.69)

where x designates the position in Lagrangian coordinates, and u, is the
particle velocity.

The differential equations describing the progress of a shock wave can
be second-order partial ones. If there are two independent variables (for
example, the position, x, and the time, t), one has a hyperbolic differential
equation if two characteristic curves pass through each point of the
space. A detailed description of the method of characteristics is given by
Karpp and Chou.'®? These characteristic curves are obtained from char-
acteristic directions. The application of finite difference techniques to
these characteristic curves produces what is known as ‘the method of
characteristics’. In its graphical representation, one sees two fans of
characteristic curves mutually normal. The shock-wave parameters can
be determined at these points. Figure 2.11 shows an example.’” The
detonation of an explosive (at grazing incidence) in contact with a metal
block generates in the latter a pressure pulse, whose front will be curved
because the shock-wave velocity depends upon pressure, which decreases .
as the wave attenuates itself. Figure 2.11(a) shows the situation schemati-
cally. The characteristic curves are shown in Fig. 2.11(b). One can
determine the state properties of the expanding gas at all intersections of
the curves of two families; the pressures within the slab can also be
found. This method of analysis lends itself to a variety of problems
involving dynamic propagation of disturbances. Specific examples are:
the impact of a plate against a target (NIP code), the motion of
compressible flat plates and cylinders drawn by detonation waves (ELA
code), plane supersonic gas flow and impact of a cylinder on a plate.

An alternative approach is the finite difference method incorporating
an artificial viscosity term. Hence, one would have the following example
given by Walsh,!® for the wave equation:

0%u ,0%u 0 cu
——=c*=c—|c—
ot? ox ox \ Ox
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Making

cu cu
c=c—, and w=—
cx 0x

One arrives at the equivalent equations:

fig)__cav.
dar  ox’ '

2.70
Ev_ w ( )
Et_cax

If one expresses these equations in forms of finite differences, one has

(n+1) _ ,o(n=1)
Wj+y —Wj+1 =c(x; )U?+2"v?,
2At U 2Ax
(n+2). n (n+1) (n+1)
vt — ' — o\
J J __ jt1 j—1
=c(x;)

2At 2Ax
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The application of the finite difference method to shocks produces a
great deal of ‘noise’. The introduction of an artificial viscosity form
greatly improves the solution. The coefficient of viscosity smoothes out
the pulse; for g? equal to 4, the representation is satisfactory. Figure 2.12
shows another example of the propagation of a shock wave as it travels
through a metal. This sequence was generated by Wilkins.'® If residual
plastic deformation takes place, one cannot use the hydrodynamic
assumption. Wilkins describes the problem in detail. In order to in-
corporate plastic flow he applies the von Mises yield criterion. Since
deformation is three-dimensional, one has a yield surface. For large
deformations one can neglect the elastic strains which rarely exceed 0.5
pct. Figure 2.13 shows in sequential form the detonation of composition
B explosive in contact with a metal block. Both the expansion of the
detonation gases and the propagation of the shock wave into the copper
plate can be seen. However, if the hydrodynamic assumption is made (no
material strength), the cratering effect is much larger (and not realistic).
Hence a yield surface has to be incorporated in this type of problem.

A variety of codes have been developed both with Lagrangian and
Eulerian coordinates. Examples of some Lagrangian finite difference codes
are TOODY,’® HEMP,!® WONDY,*° while OIL®® uses Eulerian co-
ordinates. The NAG (nucleation and growth code) was developed by
Curran, et al.%! and is intended for the study of spalling. Seaman et al.%?
developed a code (PEST) to be used in porous materials.

Although most of these codes have been used exclusively in the
development of weapons, warheads, and for gaining a better understand- _
ing of nuclear explosions, they could be very helpful in aiding the
engineer in high-energy-rate forming applications. The tendency in
military research has been to replace a great number of experiments by a
few carefully controlled and instrumented tests. Explosive forming,
welding and compaction could be simulated in computers, and the
problems of wave reflections and spalling could be predicted and
avoided. Indeed Hoenig et al.®3 have applied the HEMP code to explosive
compaction of powders.

2.4.3. Attenuation of Shock Waves

If one looks at a slightly more realistic representation of a shock pulse in
a metal, one can distinguish features not represented in Fig. 2.3 and not
treated in the hydrodynamic theory. Figure 2.14(a) illustrates such a
situation. The material strength is incorporated into the model. The
shock pulse is preceded by an elastic precursor wave with amplitude
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with copper block. (b) Same as (a), assuming hydrodynamic behavior (from ref.
16)
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F1G. 2.14 (a) Shock-wave profile including elastic precursor and incorporating

strength effects. (b) Pressure versus strain (or volume V/V;) for hypothetical solid

including strength effects; cross-hatched region represents energy dissipated in
cycle.

equal to the ‘Hugoniot Elastic Limit’ (HEL). The rarefaction portion of
the wave exhibits a plateau. These two features are better understood if
one refers to the pressure versus V/V, plot of Fig. 2.14(b). The initial
response of the material (at low pressures) is elastic; therefore, it deviates
from the hydrodynamic V/V, curve. When the Hugoniot elastic limit is
reached, the dynamic compressibility curve follows the Hugoniot curve.
Taking the slopes of the elastic and plastic curves (Raleigh lines) one can
see that the elastic precursor travels faster than the travelling shock
waves. It is only for very high pressures that the Raleigh line of the shock
pulse has a larger slope than that of the HEL region. Elastic precursors
are discussed in Section 2.4.4. Upon unloading, one has first the relieving
of the elastic stresses (A to B); then, the curve follows the Hugoniot P
versus V/V, response up to pressure zero. At point B, the rarefaction part
of the wave shows a plateau. The very important feature of Fig. 2.14(b) is
the hysteresis behavior. The cross-hatched area indicates the amount of
irreversible work done in the process. This irreversibility has a direct
bearing on the attenuation of the shock pulse.

Curran®* and later Erkman et al.®>-7 investigated the attenuation of
planar shock waves and compared it with the hydrodynamic treatment.
They found much higher observed attenuation. This is to be expected, if
one looks at the energy dissipated in Fig. 2.14(b). They found a much
better agreement incorporating the artificial viscosity into their treatment
of shock waves. Rempel et al.®% observed that the pressure starts to decay
almost immediately after it propagates, contrary to the hydrodynamic
calculations (Section 2.4.2). The problem with the artificial viscosity is
that it does not have a clearly defined physical meaning in terms of
micromechanical frictional processes. In view of this, Hsu et al.®® recently
investigated the attenuation of shock waves in nickel and proposed a
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model incorporating defect generation and motion. Figure 2.15 shows
- the calculated (hydrodynamic theory) and observed peak pressures at
varying distances from the peak interface. Two different initial pressures
were used: 10 and 25 GPa. The peak pressures observed at 10 cm from
the interface are clearly lower than the observed ones. They found no
effect of metallurgical variables (substructure and grain size) on the
attenuation rate of the pulse. An attempt was made to physically explain
the dissipative mechanisms responsible for the attenuation of the pulse.
This model is called the ‘accumulation model’ because it is based on the
conservation of energy law:

INPUT — OUTPUT= ACCUMULATION

The following calculation provides a further understanding. Assume that
a shock wave with a peak pressure of 10 GPa and 2 us pulse duration
travels 1 cm through a nickel plate of 1 cm? cross-section area. According
to the Rankine-Hugoniot theory, one can calculate internal energy per

< - unit volume, E.

In this case, the energy of the incoming pulse with 2 us pulse duration
is 233 J/cm?®. From a metallurgical or microstructural viewpoint, point
defects, line defects, twinning, precipitates, martensitic transformations,
and heating are dissipative processes causing the attenuation of a shock
‘wave. Since no twinning, precipitation, or phase transformation occurs in
the pressure range of 10 and 25 GPa, point and line defect generation,
" hydrodynamic residual rise in temperature, and temperature rise due to
dislocation motion are the significant mechanisms responsible for the
attenuation of shock waves in nickel. Dieter®® estimated the total strain
energy of a dislocation to be 1:36 x 10718 J per atomic plane. The lattice
parameter of nickel is 3.52 A. Multiplying by the dislocation density of
3.1 x 10'° cm/cm3, the total strain energy of dislocations is 1.2 J/cm?. The
vacancy concentration at 10 GPa is about 3.85x 10%/cm?2.7°® The for-
mation energy being 1.6 x 107!° J per vacancy, one obtains 6.2 x 10~ 14
J/em? for vacancies. This value is so small that it can be neglected.
According to the hydrodynamic Rankine-Hugoniot theory, the residual
temperature rise is 2 K for nickel at 10 GPa. The heat capacity of nickel
is 39 J/cm?>. The thermal energy change is 7.8 J/cm3. The total accumu-
lation energy above is about 9 J/cm3. Subtracting this value from the
input, one obtains an output of 224 J/cm? after the shockwave travels
lcm within the nickel plate. Figure 2.16 shows a comparison of the
‘accumulation model’ with the hydrodynamic theory and experimental
results.
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F1G. 2.16 Pulse energy in its downward trajectory (from ref. 68).

One can see that there is still some discrepancy between the ‘accumu-
lation’ model and the experimental results. This difference is about 120 J
-at a distance of 10cm from the top, or an average of 12 J/cm. Hence,
dislocation motion was introduced into the model to take into account
the additional energy dissipation. This can be done assuming that the
work required to move a dislocation is totally converted into heat:

W=1blp (2.71)

where 7 is the applied shear stress, b is the Burgers vector (3.5 x 10™1% m),
l'is the distance moved by each dislocation, and p the dislocation density.
Setting this work equal to 12 J and assuming, to a first approximation,
that each dislocation moves 0.7 um, one can compute 7; p is about
3.1x10'°cm™2 (Table IV of ref. 68). One finds that 1 is approximately
0.16 GPa. From the stress versus velocity plot presented by Meyers (Fig.
4. of ref. 71) for nickel, one can estimate the velocity at which the
dislocations would have to move to dissipate the required amount of
energy (12 J/cm); it is around 500 m/s. This is clearly a subsonic and
reasonable value. Hence, the ‘accumulation model’ with dislocation
motion is in a reasonable agreement with the experimentally determined
attenuation of the shock pulse.
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2.4.4. Elastic Precursor Waves

As seen in the preceding section, shock waves are preceded by an elastic
precursor when their Raleigh slope is less than that of the precursor. At a
high enough stress, called ‘overdrive stress’, the velocity of the shock
wave becomes larger than that of the precursor. Figure 2.17 shows the

PLASTIC
SHOCK WAVE

STRESS

o + -—

ELASTIC

I PRECURSOR
|

Ao

}— A'—'I TIME

F1G. 2.17 Schematic representation of elastic precursor (from ref. 81).

shape of a general precursor pulse. One has a rise time At, a peak stress
g, and a stress drop Acg. Although the elastic precursor is unimportant in
relation to the plastic pulse that succeeds it, it can provide important
information on the nature of dynamic deformation. It is for this reason
that it has received considerable attention in the past. Davison and
"Graham!? provide a comprehensive review of the subject. Some of the
work is described below. ‘ o

Taylor and Rice’? first observed the decay of the elastic precursor
amplitude with depth of penetration into the target; Taylor’® later
explained it successfully in terms of the Johnson-Gilman’# expression for
dislocation velocity. Another feature observed is yield point for-
mation’®7%7® and, consequently, stress relaxation behind the elastic
precursor; Barker et al.”? attributed it to dislocation effects predicted by
the Johnson—-Gilman model. Kelly and Gillis’? showed that thermal
activation models (e.g., ref. 7) for dislocation dynamics could explain the
observed decay behavior as well as the Johnson-Gilman model.
Johnson’® extended the Taylor’? interpretation of precursor decay to
polycrystalline metals. Rohde®°® studied the precursor decay in iron
shock-loaded at temperatures ranging from 76 to 573 K and found that
the data did not satisfy entirely any of the following models: the
Johnson-Gilman model,’* the activation energy model,’® or the linear
damping model. Meyers®! studied the effect of polycrystallinity on the
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configuration of the elastic precursor wave. Referring to Section 2.2.3,
one can see that the velocity of elastic waves is strongly dependent upon
crystallographic orientation. Thus, as the precursor travels through
different grains of a polycrystalline aggregate, the front undergoes chan-
ges as it is reflected at the boundaries and as different parts travel at
different velocities. Consequently, the rise time (At in Fig. 2.17) is
affected; Fig. 2.18 shows how Meyers’ model predicts different distri-
butions of the precursor front for different grain sizes, after a distance of
19.05mm as has been traversed. The greater the grain size, the greater
“the spread in the front and, consequently, the greater the rise time At.
This effect is particularly applicable to low shock pressures (<5 GPa)
but decreases in significance with peak pressures>5 GPa.

Of great significance from the point of view of fundamental under-
‘standing of the behavior of metals, was the discovery by Jones and
Holland.3? The height of the precursor pulse (¢ in Fig. 2.17) was found to
be independent of grain size. In conventional deformation, on the other
hand, the flow stress of iron is significantly dependent upon grain size,
the Hall-Petch relationship being the well-known equation relating these
two parameters. This finding indicates that the mechanisms of dis-
location generation and plastic flow at the precursor front are dif-
ferent from those in conventional deformation, and that grain boundaries
do not play any significant role.

2.5. DEFECT GENERATION

The reader is referred to ref. 55 for a more in-depth treatment of this
section. Metallurgical microdefects are classified into four groups: point,
line, interfacial or planar, and volume defects. They are responsible for
the great variety of mechanical properties and can be used to strengthen
the material. A substantial amount of knowledge and understanding on
.defect generation and their effects on the mechanical properties of shock-
loaded metals has been gained over the past thirty years. The defor-
mation regimes between conventional and shock wave strain rates have
not been so exhaustively and systematically investigated. Effects of
plastic waves and thermoplastic shear instabilities are not well under-
stood. The detailed mechanical and metallurgical effects are treated in
Chapter 3; the fundamental mechanisms are discussed here. Except for
this paragraph, the discussion will be restricted to shock waves. An
increase in strain rate produces, in general, an increase in flow stress; this
is shown in Fig. 3.1 of Chapter 3. Edington!*?:!43 gystematically in- -
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vestigated the effect of strain rate on the dislocation substructure. For
both niobium!43® and copper,’*?> he observed the classical flow-stress
increase with strain rate increase. He studied the interval 107 4-103s~!
for niobium and 10™4~10* s ™! for copper, using a Hopkinson bar for the
higher strain rates. For niobium, he found a more uniform dislocation
distribution at 1.5x103s~! than at 1.2x107*s~!. On the other hand,
for copper no significant difference in the distribution and density of
dislocations deformed at 6.5x103s™! and 4x107*s~! was found. In
order to understand the effect of strain rate on the final substructure, one
has to recognize the importance of the stages leading to this final
distribution; dislocation generation, interaction, movement. The dissi-
pative processes involved in dislocation motion are responsible for the
requirement of increasingly higher stresses to move the dislocations at
increasingly high velocities. The nature of this dependence is very
important in establishing the flow stress and the dislocation multipli-
- cation and reaction processes. These, in turn, determine the final distri-
bution. In the intermediate velocity range, the velocity of dislocations has
been found to be linearly related to the stress:

T=Bv

where B is the damping constant; at ambient temperature phonon
‘viscosity’ seems to be the principal damping mechanism.

The importance of separating deviatoric from hydrostatic stresses in
the treatment of shock waves cannot be over emphasized. Different
phenomena are controlled by different stresses. Hence, one has:

Dislocations: generation and motion controlled by deviatoric stresses,
stacking-fault energy affected by hydrostatic stresses.

Dispersed particles: they are a source of dislocations due to the
different compressibilities; hence, this is an effect of hydrostatic stresses.

Individual grains: in materials that do not exhibit cubic symmetry,
individual grains have anisotropic compressibilities and hydrostatic
stresses will establish compatibility stresses at their interfaces.

Displacive/diffusionless phase transformation: a humber of phase trans-
formations are induced in materials by the hydrostatic component of
stress. Martensitic transformation can also be induced by shear stresses
or strains. B

Twinning: activated by shear stresses. The hydrostatic stresses migh
have an indirect effect. _'

Point defects: their generation is due to shear stresses; their diffusion
rate is affected by hydrostatic stresses.
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Recovery and melting point: affected by hydrostatic stress.
Shock and residual temperatures: affected by both hydrostatic and
deviatoric stresses, but for different reasons.

2.5.1. Dislocation Generation

The dislocation substructures generated by shock loading depend on a
number of shock-wave and material parameters. Among the shock-wave
parameters, the pressure is the most important one. As the pressure is
increased, so does the dislocation density.?! As the dislocation density
increases for high stacking-fault energy FCC metals, the cell size de-
creases. Murr and Kuhlmann-Wilsdorf°® found that the dislocation
density varies as the square root of pressure (pocp'/?). This dependence
breaks down at pressures close to 100 GPa, due to shock-induced
heating.

The effect of pulse duration has been and remains, to some extent, the
object of controversy. Its effect for various alloys is reviewed in reference
91 and discussed in detail in reference 92. Appleton and Waddington®?
were the first to suggest its importance.

The effect of pulse duration is principally to allow more time for
dislocation reorganization. The cell walls become better defined as the
pulse duration increases, because there is more time for dislocation
reorganization. This is shown in Fig. 2.19 which also shows the impor-
tant microstructural changes, particularly dislocation density, which
result when the pressure increases. Experimental observations at very
low pulse durations do not seem to be in line with the above rational-
ization. Marsh and Mikkola®4 have observed that dislocation density
increases with increasing pulse duration in the sub-microsecond range. It
is possible that these effects are due to subtle pressure variations.

There are some systematic differences and similarities between shock-
induced and conventionally-induced dislocations; some of these will be
briefly reviewed here. In FCC metals, the stacking-fault energy deter-
mines the substructure to a large extent. In any case, however, the
dislocations seem to be more uniformly distributed in shock than in
conventional deformation. In high-stacking-fault energy alloys, the cell
walls tend to be less well-developed after shock loading than after
conventional deformation, especially by creep or fatigue, which allow
time for dislocations to equilibrate into more stable configurations.

In addition, if the shock pulse duration is low, the substructures are
more irregular because there is insufficient time for the dislocations
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FiG. 2.19 Composite of bright-field electron micrographs showing effect of

pressure and pulse duration on the shock-wave response of nickel. All surface

orientations are (001), and at 30 GPa, 2 us both twin and cells exist in (001)

orientation. The preponderance of twins also increases in (001) orientations at 30
GPa above 2 us pulse duration.

generated by the peak pressure (in the shock front) to equilibrate®® (Fig.
2.19). There is usually a preponderance of dislocation loops associated
with the residual shock microstructures, and this is especially unique to
shock loading at high stacking-fault free energy metals and alloys. At
shock pressures above about 10 GPa, most FCC metals having stacking-
fault free energies above about 50 mJ/m? tend to exhibit dislocation cell
structures as shown in Fig. 2.19. Between 50 and about 40 mJ/m? a
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transitional range gives rise to tangles of dislocations, poorly formed
cells, and sometimes more planar arrays of dislocations (associated with
the {111} slip planes).

For lower stacking-fault free energy metals and alloys, there is a ten-
dency toward planar dislocation arrays below about 40 mJ/m?2; with
stacking faults and twin faults becoming prominent for stacking-fault free
energies below about 25 mJ/m?. This is illustrated in Fig. 2.20 for nickel
and 304 stainless steel shock loaded to the same pressure, at the
same pulse duration.

The effect of shock loading on BCC metals is similar to that for nickel
in Fig. 2.20(a) but lacks well defined dislocation cells. Shock loaded iron

F1G. 2.20 Comparison of substructures in high stacking-fault free energy nickel
(128 mJ/m?) in (a) and in low stacking-fault {ree energy type 304 stainless steel
21 mJ/m?)in (b) (15 GPa, t =2 us).
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is characterized, at pressures below 13 GPa, by arrays of straight and
parallel screw dislocations, in the properly oriented grains. In molyb-
denum, the substructure is one of homogeneously distributed
dislocations.

Shock loaded HCP metals have not been extensively studied by
transmission electron microscopy. Koul and Breedis®® found, at 7 GPa,
dislocation arrays that they described as being intermediary between
those of FCC metals such as Cu and Ni, and BCC metals such as iron
and Fe,Al. The substructure also exhibited twins and phase transfor-
mations, at higher pressures. Murr and Galbraith®’ studied shock-
Jloaded beryllium which exhibited dislocation substructures similar to
those of BCC metals. No twins were observed up to a pressure of 0.9
GPa. A strong dependence of dislocation density was noted for grain
boundary structure. This feature is consistent with the establishment of
compatibility stresses at the interfaces due to the anisotropy of compres-

~  sibility, as noted above, giving rise to a preponderance of dislocations

from grain-boundary sources as well as alterations in the boundary
structure.

The limitations of Smith®® and Hornbogen’s®® proposals led
Meyers’!'1°° to propose a model whose essential features are:

(a) Dislocations are homogeneously nucleated at (or close to) the
shock front by the deviatoric stresses set up by the state of uniaxial
strain; the generation of these dislocations relieves the deviatoric
stresses. '

(b) These dislocations move short distances at subsonic speeds.

(c) New dislocation interfaces are generated as the shock wave pro-
pagates through the material.

This model presents, with respect to its predecessors, the following
advantages:

(a) No supersonic dislocations are needed.
(b) It is possible to estimate the residual density of dislocations.

Figure 2.21 shows the progress of a shock wave throughout the material
in a highly simplified manner. As the shock wave penetrates into the
material, high deviatoric stresses effectively distort the initially cubic
lattice into a monoclinic lattice. When these stresses reach a certain
threshold level, homogeneous dislocation nucleation can take place.
Hirth and Lothe!®! estimate the stress required for homogeneous dislo-
cation nucleation. The nucleation mechanism at the shock front is
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F1G. 2.21 Progress of shock front according to Meyers model.
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unique, and different from homogeneous nucleation in conventional
deformation. In shock loading, the dislocation interface separates two
lattices with different parameters. However, it will be assumed that the
stress required is the same, (as a first approximation). From Hirth and
Lothe!°" one has:

17,/G=0.054 (2.72)

where 7, is the shear stress required and G is the shear modulus, which
is pressure-dependent. When the maximum shear stress becomes equal to
1, (and is acting in the correct orientation), homogeneous dislocation
nucleation takes place. Substituting egn. (2.72) into eqn. (2.68) one
obtains:

P=0.027K

This value can be obtained from Fig. 2.8(b) by trial and error. It
corresponds to a pressure of approximately 6 GPa. Figure 2.21(b) shows
the wave as the front coincides with the first dislocation interface. The
density of dislocations at the interface depends on the difference in
specific volume between the two lattices and can be calculated therefrom.
In Fig. 2.21(c) the front has moved ahead of the interface and the
deviatoric stresses build up again; other layers are formed in Fig. 2.21(d).
It should be noticed that since the macroscopic strain is ideally zero after
the passage of the wave, the sum of the Burgers vectors of all dislocations
has to be zero. This is accomplished, in the simplified model presented
here, by assuming that adjacent dislocation layers are made of dislo-
cations with opposite Burgers vectors. Figure 2.22 shows two adjacent
layers under the effect of shear stresses still existing in the lattice after the
dislocations were nucleated; a group of dislocations move away from it.
It is possible to estimate the velocity at which these dislocations move if
one knows 7. As these dislocations move, they locally accommodate
and decrease 7_... The total amount of internal friction and heat gene-
ration due to dislocation motion can be calculated by knowing the
difference between the measured and the thermodynamically-calculated
residual temperature. A simplified calculation is presented by Hsu et
al,5® Greater details of the model as well as comparisons of calculations
with measured dislocation densities are presented elsewhere.”!+1°

Recent experimental results®®:1°2 lead the authors to believe that the
rarefaction part of the wave plays only a minor role in dislocation
generation. The main reason for this is that the rarefaction part of the
wave enters into a material that is already highly dislocated. It was found
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F1G. 2.22 Movement of dislocation generated at the shock front (from ref. 55).

that when nickel is shock-loaded repeatedly, the increase in dislocation
density is much less pronounced for the succeeding events.®®:1°% The
shock wave passing through a highly dislocated material is not such an
effective dislocation generator. This is consistent with Meyers’ pre-
dictions'®® ... ‘that if a pre-strained material is shock-loaded, part of the
"deviatoric stresses at the shock front could be accommodated by existing
dislocations; in this case the number of dislocations that would be
generated at the front would be reduced. The same argument can be
extended to the rarefaction portion of the wave; it can accommodate the
deviatoric stresses by the movement of the existing dislocations.
Additionally, the time interval in which attenuation takes place is much
higher than in which the shock front rises; 200 ns versus 1 ns’.

By using a different approach, Mogilevsky!®*1%* independently
reached some conclusions similar to those presented here. Computer
calculations using a Born—Meyer potential for the atoms allowed
Mogilevsky to follow the position of atoms with time. Although a perfect
lattice of copper remained elastic up to pressures of 30 GPa, the
introduction of point defects allowed the deviatoric stresses to be relaxed
by stacking-fault (and, possibly, dislocation) generation at pressures as
low as 5 GPa. :

An alternative model for dislocations at the shock front was recently
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proposed by Weertman.'®® For a strong shock, pulse, he concluded that
the front is composed of supersonic and trailing subsonic dislocations.
For weaker shock pulses no supersonic interface would be required; arrays
of subsonic dislocations, trailing the front (similar to Meyers’ dislo-
cations) would attenuate the deviatoric stresses.

2.5.2. Point Defects

Shock loading is also responsible for a high density of point defects. The
dynamic strain induced is represented by:

8—41n v
3\,

This corresponds to the sum of the strains imparted by the shock front
and the rarefaction part of the wave. In the first systematic comparison
between point defects generated by shock loading and cold rolling,
- Kressel and Brown’® reported vacancy and interstitial concentrations
three to four times higher after shock loading than after cold rolling.
However, direct quantitative evidence of vacancies and vacancy-type
defects was obtained for the first time by Murr et al.!°? Figure 2.23
shows some of the vacancy loops in shock-loaded molybdenum and
nickel.'°? Field-ion microscopy showed that these loops in molybdenum
accounted for only a small portion of the shock-induced vacancies; the
majority exist as single vacancies or small clusters difficult to resolve by
‘conventional electron microscopy.

- It is relatively simple to understand why shock loading mduces a large
concentration of point defects. The primary source of point defects is the
non-conservative motion of jogs. These jogs are generated by the in-
tersection of screw or mixed dislocations. Figure 2.22 shows the direction
of motion of dislocations under the effect of the residual shear stresses.
As they move, 7, decreases, but in the process the dislocations intersect
each other, generating jogs. The non-conservative motion of these jogs
produces strings of either vacancies or interstitials. These can also occur
as dislocation loops when observed in the electron microscope as shown
in Fig. 2.23. The subject is treated in detail by Hirth and Lothe.!!
Meyers and Murr’® describe the model based on non-conservative
motion of jogs in detail. For a pressure of 20 GPa in nickel, they find a
point-defect concentration of 7x 107°. This compares favorably with
results reported by Kressel and Brown,”® and Graham!°® presents an
excellent overview of shock induced point defects. '



70 M. A. MEYERS AND L. E. MURR

FiG. 2.23 Vacancy-type dislocation loops (arrows) in shock-loaded metals (a) *
~ molybdenum shock loaded at 14 GPa, 2 us; (b) nickel shock loaded at 20 GPa.

2.5.3. Deformation Twinning -
The most important and self-consistent comment that can be made
about deformation twins is that twinning is a highly favored deformation

- mode under shock loading. Metals that do not twin by conventional
deformation at ambient temperature can be made to twin by shock
loading. In this respect, as in the morphology of dislocation substruc-
tures, shock deformation resembles conventional deformation at low
temperature: loose cell walls and a greater tendency towards twinning.
The ease of twinning depends on several factors:

(a) Pressure—Nolder and Thomas!®!!® found that twinning oc-
curred, in nickel, above 35 GPa pressure. This was generally confirm-
ed by Greulich and Murr.!!! DeAngelis and Cohen'!? found the same
effect in copper.

(b) Crystallographic orientation—it is the deviatoric component of



PROPAGATION OF STRESS WAVES IN METALS 71

stress that induces twinning. Hence, when the resolved shear stress in the
twinning plane and along the twinning direction reaches a critical level,
twinning should occur. DeAngelis and Cohen'!? found an orientation
dependence for the threshold stress; copper single crystals twinned at 14
GPa when the shock wave traveled along [100] and at 20 GPa when it
travelled along[111]. Greulich and Murr!!! found, for nickel, that at
and above about 35 GPa, twinning occurred preferentially for [100]
grains (Fig. 2.19). As the pressure was increased, the preponderance of
twins increased along orientations other than [100].

(c) Stacking-fault energy—as the SFE of FCC metals is decreased, the
incidence of twinning increases. As a corollary, the threshold stress for
twinning should decrease.

(d) Pulse duration—the effect of pulse duration, first explored by
Appleton and Waddington,”® was systematically investigated by
Champion and Rohde!!? for an austenitic (Hadfield) steel. They found
striking differences in twin densities for different pulse durations, at 10
GPa. Numerous twins were observed at 2 us, while no twinning was
present at 0.065 us. They concluded that there must be a threshold time
for twinning. Staudhammer and Murr'!* investigated the effect of pulse
duration (0.5, 1, 2, 6, 14 us) on the substructure of AISI 304 stainless
steel. They found an increase in twin density up to about 2 us; beyond
that the twin density seemed to be essentially constant. Stone et al.''®
found an increase in twin density as the pulse duration was increased
from 0.5 to 1.0 us, in both the AISI 1008 steel and Armco magnetic ingot
iron. The twins generated by the shock pulse should not be confused
with the ones formed by the elastic precursor wave, in iron; the latter
ones were investigated by Rohde.!!® Although twins are generated by
the elastic precursor waves, the volume percent of twins generated by the
shock wave is an order of magnitude higher. While the elastic precursor
may produce a twin density of 3 vol pct, a shock wave of 30 GPa peak
pressure and 1 us pulse duration has been shown to generate about 50
vol pct of twins.

(e) Existing substructure—Rohde et al.''” found profuse twinning
upon shock loading titanium-gettered iron in the annealed condition.
However, predeformed samples exhibiting a reasonable density of dis-
locations did not twin. The same results were obtained by Mahajan''®
for iron. Hence, if one looks at dislocation generation and motion,
and twinning as competing mechanisms, one can rationalize this re-
sponse. The deviatoric stresses generated by a shock wave are accommo-
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‘dated by twinning when no dislocations are available and by motion
of the already existing dislocations, if iron is predeformed.

() Grain size—Wongwiwat and Murr!? were able to explain conflict-
ing data reported in the literature’®’-2° on the incidence of twinning in
molybdenum by showing that, at a certain pressure, large-grain sized
specimens twinned more readily than small-grain sized ones. However, it
'should be emphasized that this response is not unique to shock loading;
indeed, iron-3 pct silicon'?! and chromium!?? have been shown to
exhibit a strong grain-size dependence of the twinning stress (in con-
ventional deformation). Kestenbach and Meyers!?®!23 investigated the
effect of grain size on the substructure of AISI 304 stainless steel.

Two fundamentally different mechanisms have been proposed to
account for twin formation. The first involves a pole mechanism pro-
posed by Cottrell and Bilby!?* for BCC metals, and extended to FCC
metals by Venables.!?5 The pole mechanism involves dislocation motion
which sweeps out the twin spiraling around a dislocation pole. This
requires a rather longer time than generally available in shock loading,
and this velocity or time limitation led Cohen and Weertman'?® to
propose a much simpler model, especially applicable to FCC metals and
alloys. This latter model involves the production and systematic glide
motion of Shockley partial dislocations on every [111] plane to produce
a twin which propagated with the velocity of propagation of the partial
dislocation. Sleeswyk!27 has also proposed a model for twin formation in
BCC metals which is phenomenologically identical to that of Cohen and
Weertman!2® in FCC materials. Sleeswyk’s model involves the
systematic glide of dislocations on [112] planes in the BCC structure.

. 2.5.4. Displacive/Diffusionless Transformations

There are numerous instances in which a shock wave induces a phase
transformation. A very detailed review is presented by Graham and
Duvall;!2® for this reason, only a classification scheme will be presented
here. The phase transformations involving diffusion are excluded from
this discussion. Stein'2° has shown that precipitation is induced by shock
loading.

Cohen et al.'3° recently proposed a classification scheme for dis-
placive/diffusionless transformations. The first division is between A
shuffle and lattice-distortive transformations; the latter group is divided
into two sub-groups; dilatation-dominant and deviatoric-dominant
transformations. The term martensitic (and quasi-martensitic) is reserved
- for the lattice distortive transformations in which the deviatoric
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component of stress is dominant. Hence only the FCC—BCC (or BCT)
and FCC—HCP transformation in the Fe-base alloys and the BCC—
close packed transformations in the noble metal alloys can be called
martensitic. A whole range of phase transformations, such as the
beta—omega in Ti alloys and the tetragonal—cubic transformation in tin,
cannot be called martensitic.

The effect of a shock pulse on a displacive/diffusionless transformation
has to be analysed from three points of view: (a) pressure; (b) shear
stresses and (c) temperature. The changes in these parameters are not
independent; there are specific temperature rises and deviatoric stresses
associated with a certain pressure level. Nevertheless, they have different
_effects on the thermodynamics of phase transformation. A phase trans-
formation resulting in a reduction of volume, for example is thermo-
dynamically favored at high pressure, because it will tend to decrease the
pressure in that region. On the other hand, a phase transformation in

= which the product has a lower density is not favored by the pressure.

Figure 2.24 shows the pressure-temperature diagram for iron. At a
certain critical pressure, the BCC («) phase transforms to either HCP (¢)
or FCC (y), depending upon the temperature. Both these phases are more
closely packed than «(BCC). Figure 2.24 also shows that the pressure
increase is coupled to a temperature increase. Hence, the pressure path
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Fi1G. 2.24 Temperature-prqssure diagram for iron.
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has a slight slope. Plutonium is another metal that is very interesting
from a metallurgical point of view. It undergoes six different phase
transformations, some with large differences in density.!3' The room
temperature monoclinic phase has a high density (19.86); hence the
pressure will not induce phase transformation. On the other hand, if the
shock wave passes through one of the lower density phases, it will favor
its transformation into the higher-density phases. Plutonium is unique in
that melting is accompanied by a volume decrease. Hence, the pressure
has the effect of reducing the melting point; in metals where the melting
point is associated with an expansion, pressure increases the melting
point. Some of the transformations in Pu alloys are, due to the large
density changes, considered as dilatation-dominant, and are therefore
not considered as martensitic. Patel and Cohen'3? have established a
rationale for the effect of stresses on the M, temperature in martensite
transformations. They found that, in Fe-30 pct Ni alloy, the hydrostatic -
pressure decreased the M_ temperature. In these alloys, there is a
dilatation of 5 pct associated with the martensitic phase. Hence, a
pressure pulse should not favor the transformation, and this is reflected
in the decrease in M_. On the other hand, an alloy in the martensitic
form should revert to austenite, if a pressure pulse were applied, because
this would result in a contraction of the lattice.'?3 A negative pressure
pulse inducing negative hydrostatic pressures would be the converse
situation and the y(FCC)—-a(BCC or BCT) transformation would be
favored, with an increase in the transition temperature. Meyers and
Guimardes'?* were able to produce a tensile pulse and generate mar-
tensite in an Fe-31 pct Ni-0.1 pct alloy. Figure 2.25 shows the martensite
tube generated by tensile waves; this tensile wave was produced by a
compressive shock wave, as it reflected at a free surface. The region of the
material traversed by the compressive wave exhibited only a dense array
of dislocations organized in cells and occasional twins. This phenomenon
was used to calculate a nucleation time for the martensitic
transformation.!33

The effect of shear stresses always associated with the pressure is more
difficult to assess. In deviatoric-dominant transformations the externally
applied shear stresses can play an important role in the initiation of trans-
formation. The transformation is favored along the crystallographic
orientations in which the transformation shear will tend to decrease the
externally-applied shear, and will tend to decrease the overall internal
energy. Martensite can be considered as a deformation mechanism
competing with slip and twinning, and externally applied shear stresses



F1G. 2.25 Martensite generated by tensile hydrostatic stresses produced by a
reflected pressure pulse in an iron—nickel alloy (from ref. 134). Bar =100 um.
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<

‘increase M,. The shear stresses introduced by the shock waves tend to
favor the generation of martensite. However, these shear stresses are
‘much lower than the hydrostatic stresses for most shock waves, because
dislocation nucleation and twinning will attenuate them. Hence, they will
only generate martensite when the temperature at the shock front is
“slightly higher than M_. In this case martensite transformation can
effectively compete with twinning and slip. Olson and Cohen!3® have
shown that, during conventional deformation at temperatures slightly
above M., yielding is produced by stress-induced martensite. The same
.phenomenon was confirmed by Guimardes et al.'*” Up to 20 K above
M., yielding was initiated by martensitic transformation. Hence, one can
conclude that the shear stresses associated with shock loading might be
important in martensite nucleation if the temperature at the shock front
is within 50 K of the M_ under the imposed conditions (at the level of
" pressure established by the shock pulse). These features are demonstrated
by Staudhammer et al,!3® who also show that martensite forms ex-
-clusively in 304 stainless steel at the intersections of twin-faults by a
strain-induced process described previously.!3® This process involves the
‘selective movement and interaction of groups of partial dislocations, at
temperatures well above the M temperature for the stainless steel (which
is below 4 K). When Shockley partial dislocations of the type a/6{112)
are created on every other {111} plane, a packet of HCP (¢) martensite is
created. When these bundles intersect with more complex faulting arrays
(such as 3a/8<112) fault arrays), o’ (BCC) martensite is created within
the intersection volume. Once nucleated, strain-induced intersection
martensite () can grow by coalescence of the intersection volumes, or by
stress-assisted processes. In other words, once formed, martensite growth
can be somewhat catastrophic when a stress assist is imposed. For
example; having created some martensite by an initial shock pulse, a
subsequent shock may induce considerably more martensite. In addition,
shock pressure applied in longer pulses at high pressure can have a
similar effect.®®

2.5.5. Other Effects

There are a number of other shock effects which are mentioned only
briefly in concluding this section. These relate mainly to the impedance
differences encountered by the shock wave which can manifest them-
selves in velocity differences, etc. The realization of the anisotropy of
elastic and plastic properties of the individual grains in a polycrystalline
material led to a ‘wavy-mode’ model which attempted to account for



PROPAGATION OF STRESS WAVES IN METALS 77

-~

such differences.!3® However, at higher pressures (P2 10 GPa) velocity
differences due to crystallographic orientations are practically imper-
ceptible, and in general the shock wave is not significantly affected.

Wave reflection and refraction at grain boundaries and other internal
asperities which arise by difference in structure and composition can also
occur by impedance discontinuities. These effects are, however, also of
secondary importance at high pressures (>10 GPa). None the less,
second-phase particles can play a significant role in the generation of
defects, particularly dislocations. This feature is especially prominent at
coherent precipitates which lack coherence with the shock wave passage,
and the loss of coherence is accommodated by the creation of dis-
locations which can also multiply. Das and Radcliffe!*° have observed
the punching out of dislocations at precipitates and such phenomena
can also lead to nucleation of other defects, such as twins as illustrated
by Leslie et al.}*!
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