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Numerical Modeling of the Propagation

of an Adiabatic Shear Band

SHINHOU KURIYAMA and MARC ANDRE MEYERS

The critical phenomena determining the propagation of an adiabatic shear band occur at its extremity.
The stress and strain distributions at the tip of a shear band are calculated as a function of applied shear
strain using the finite elecment method for an elasto-plastic material. Three assumptions simplify the
calculations considerably: (a) the mechanical response of the material follows an adiabatic stress-strain
curve: (b) the material within the shear band has zero shear strength; (c) the body is taken to be in
equilibrium. The distribution of stresses and strains in the adiabatically-deformed material is compared
to that of a quasi-statically deformed material. While the stress-strain curve for an isothermally
deformed material is monotonic with continuous work-hardening, the adiabatic work-hardening curve
reaches a plateau followed by work-softening (due to thermal softening). The stress and strain fields
for both cases are nearly identical. except in the region directly in front of the shear band. In the
adiabatically-deformed material a thin region (~5 um) with large strains and lowered stresses is
produced. This region. in which accelerated deformation takes place as the applied shear deformation
increases, is absent in the isothermally-deformed material: The formation of this instability region,
ahead of the shear band, is considered to be the mechanism for the propagation of an adiabatic

shear band.

I. INTRODUCTION

AN adiabatic shear band is a strain localization phenome-
non that occurs when the rate of softening of the material
due to temperature increase is greater than the rate of work
hardening due to plastic deformation. Adiabatic shear bands
have been characterized in numerous metallurgical in-
vestigations, and the reviews by Rogers,' Bedford er al.,’
and Olson et al.? attest to this. The mechanical modeling of
these bands has also been conducted, with a number of
different approaches.* " The work is presented by Mescall
and Weiss." The destabilizing effect of thermal softening,
reducing the slope of the stress-strain curve in nearly adia-
batic deformation, was first recognized by Zener and
Hollomon.® The nucleation of shear bands was first cor-
related with the shear strain at which the slope of the adi-
abatic stress-strain curve is zero by Recht,* and this method
has been developed further by other researchers.*'*!" An
elementary linear perturbation analysis of plastic instability
due to thermal softening for the nucleation of a shear band
was presented by Clifton et al..” and this method has
been applied by other researchers.®*'* The formation of
the shear band was analyzed numerically by Olson ef al.’
using the HEMP code (finite difference formulation) and
by Lindholm er al..’ using the EPIC code (finite element
method); these codes deal with the combined thermal-
mechanical problem. The former analyzed the formation of
a shear band produced by the simple shearing in a two-
dimensional rectangular body, and the latter analyzed it in a
thin-walled tubular specimen subjected to pure torsional
loading. A comprehensive development program of a com-
putational model for shear bands has been carried out at
SRI-International by Seaman, Curran, Shockey, Erlich, and
co-workers.*!#-2
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In all of these studies, the shear band was treated as an
interface (or a region with discrete thickness) of discon-
tinuity.* The present work focuses on the tip of the shear

*Formulations incorporating both heat transfer and the effect of strain
rate on the flow stress have been developed by M. Wada. T. Nakamura. and
K. Kinoshita (Phil. Mag. A. 1978, vol. 38, p. 167), and the effect of strain
rate on the flow stress has been developed by M. Wada. T. Nakamura. and
K. Kinoshita (Phil. Mag. A, 1978. vol. 38, p. 167) and A. M. Merzer
(J. Mech. Phys. Sol., 1982, vol. 30. p. 323). G. R. Johnson (J. Eng. Mar.
and Techn., 1981, vol. 103. p. 201) compared experimental results with an
analysis using the finite element method incorporating strain rate, tem-
perature, and heat transfer effects. However, none of the above analyses
addressed the tip of the shear band.

band, and assumes that the critical phenomena dictating the
propagation or arrest of a shear band occur at the tip. This
approach is analogous to fracture mechanics in which the
crack tip is the region where the relevant processes are
taking place, while the crack surfaces are merely the prod-
uct. Indeed. there have been proposals that shear bands are
Mode 1] shear cracks, with friction between the two surfaces
at the high strain rates producing welding of the two surfaces
(friction welding).

Figure 1 shows the tip of a shear band in AIST 4340 steel
in the quenched and tempered condition. The propagation of
the shear band takes place by the extension of its right-hand
side extremity. The driving energy for the extension of the
tip comes from an increase of the imposed displacement d.
which generates shear stresses and strains. In the analysis
presented in this paper the plastic deformation ahead of a
shear band is calculated as a function of deformation (or
imposed displacement d).

II. MODEL

A. Assumptions

A number of assumptions are required to render the prob-
lem tractable. The principal assumptions are given and jus-
tified below.
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(a) Negligible flow stress in shear band. Post-deforma-
tinn measurements have shown that the hardness in the shear
band can be very high and often exceeds that of the sur-
rounding material. However. during the process of propa-
gation. plastic deformation is highly localized in the
shear-band region, leading to significant temperature in-
creases. Temperatures can approach and possibly exceed the
melting point. Assuming adiabaticity. one could calculate
the temperature increase as a function of strain: strains as
high as 572 have been measured in shear bands.? There is
evidence that the flow stress in the shear band is much lower
than the surrounding matenal during or immediately follow-
ing deformation. Rogers™ (Figure 4. p. 107) shows voids
inside a band produced by tension. forming immediately
after band formation. These voids are spherical in shape
and are restricted to the shear band. He concludes that the
band is weaker than surrounding material. Grebe et al.*
(Figure 8, p. 767) observed voids in bands that turn from
spherical to elliptical when the void diameter equals the
band thickness. Again. the voids restrict themselves to the
band. indicating a much lower flow stress inside the band
area. Timothy and Hutchings™ (Figure 5) make the same

observation and conclude that “the existence of high tem- -

peratures within the shear bands at the end of the loading
phase of impact can be inferred indirectly. ... from the
rounded shapes of the cavities that sometimes form within
the shear zones.” The only direct measurement of tem-
perature within the shear-band zone is, to the authors’
knowledge. the one conducted by Dao and Shockey** by an
infrared microscope; they found temperatures of 500 °C.

(b) An adiabatic stress-strain curve represents the plastic
deformation process. Each point in Figure 1, during the
band propagation stage, is subjected to a specific strain rate,
has a specific temperature, and has a flow stress which

increasing imposed displacement d
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depends on the stress. temperature, and previous defor-
mation. An elasto-plastic moder which would incorporate
these variables and heat transfer would be exceedingly com-
plex. Since plastic deformation is occurring at a high strain
rate, the assumption of adiabaticity is a reasonable one. The
use of an adiabatic stress-strain equation was introduced by
Olson et al.* and greatly simplifies computer calculations,
allowing one single equation to represent the behavior of the
material. These stress-strain relationships can be obtained
from high-strain-rate torsion or shear tests; the strain rate
must be significantly high to assure minimum heat flow and
sufficiently low to eliminate plastic wave propagation as a
significant contributor. For the model developed in the
present paper the adiabatic stress-strain curve for quenched
and tempered HY-TUF steel obtained by Olson er al.’ is
used; the computational predictions are compared with those
of an isothermal material. The use of this adiabatic stress-
strain curve allows a realistic modeling by eliminating the
need to directly introduce temperature effects; it assumes
that the deformation is taking place at the same strain rate
throughout the entire specimen.

(¢c) The bodv is assumed to be in quasi-static equilibrium
throughowt the deformation process. As such, wave-
propagation effects are absent. In order to express the dy-
namic movement of the body, the stresses are assumed
to increase along the adiabatic stress-strain curve (thus,
thermal conductivity®® is not considered) at the high imposed
strain rate.

B. Mechanical Response of Material
The material is assumed to behave adiabatically. The
adiabatic stress-strain curves are characterized by initial
work hardening followed by work softening; a plastic
Material behaves

adiabatically
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e
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Fig. 1 — Extremity of shear band in AIST 4340 steel in quenched and tempered condition: basic assumptions used
in model are indicated (photograph courtesy of C. Wittmar., NMIMT). Magnification 248 times.
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instability stmin +y, defines the bound between the two
regimes. For the model herein developed. the adiabatic
stress-strain curve for a high-strength steel determined at a
strain rate of ¥ = 10° s™' in a torsion test by Olson er al.’
was used. The plastic instability strain y, is equal to 0.112.
This low value establishes some doubt as to whether in-
stability is caused by thermal softening or by some other
mechanism. such as subcritical shear microcracks. How-
ever. this curve was vsed for the following reasons: (1) it is
one of the few curves available: (2) the computation time for
high-strength steel is considerably lower than for low-
strength steel. which has an instability strain y, = 1.11:
(3) the adiabatic stress-strain curve for the same material
(HY-TUF in quenched and tempered condition) was used by
Olson er al.” to examine the formation of shear band by
simple shearing of an unnotched rectangular body. The fol-
lowing equation was developed by Olson er al.” to describe
the adiabatic shear stress-shear strain curve:

T = 7(l + ay,) exp(—By,) I

7 is the shear stress and y, the plastic shear strain. For the
quenched and tempered HY-TUF steel. 7, = 917 MPa.
a = 7.85. and B = 4.18. The instability strain y, can be
found by setting d7/dvy, equal to zero. One finds that
Tma = 1079 MPa and y, = 0.112. Converting Eq. [1] into
effective stress vs effective strain:™

o = o4l + a¥,) exp(— B¢, [2]

1000
Adiabatic stress-strain curve
=1588.3(1+13.68,)EXP(—7.24¢,)
— —— "Parabolic” work-hardening curve
G=2240(F, +0.005)" *44¢
500 &  Experimental data
]
!
!
|
'
!
L ) .
0 0.0! 0.05 & 0.1 0.15

Eftective plastic strain &,

Fig. 2— Effective stress-strain curves for HY-TUF steel in quenched and
tempered condition. Full line indicates adiabatic behavior, representative of
high-strain-rate deformation; dashed curve represents monotonic work-
hardening curve, representative of low-strain-rate deformation (data from
Olson er al.’).

METALLURGICAL TRANSACTIONS A

where 0o = 1588.3 MPa, a = 13.6. B = 7.24. ¢, =
0.0646. and Tma = 1868.9 MPa. The material constants
for elastic deformatnon are E = 206.7 GPa (Young's modu-
lus) and »» = 0.28 (Poisson’s ratio). The adiabatic effective
stress—effective strain curve is shown in Figure 2 by a
solid line.

In order to compare the propagation of the shear band
under an adiabatic condition with the progressive defor-
mation produced under conditions where no instability ac-
curs. a “parabolic™ work hardening curve shown by the
broken line (Figure 2) was developed. It simulates the iso-
thermal behavior of the material. if the assumption that
instability is generated by thermal softening is a correct one.
Up to the instability strain vy, it is very close to the adiabatic
curve. Bevond instability. the two curves diverge markedly,
with the “parabolic™ curve being represented by:

T = 2240(%, + 0.005)" ™ (3]

C. Compuational Method

The assumptions enumerated in Section [I-A allow the
problem to be modeled by the finite-element method for an
elasto-plastic material. The mechanical behavior of the ma-
tenal is assumed to obey the von Mises flow criterion and
the incremental theory of Prandtl-Reuss.* Deformation of
the rectangular body is treated as a plane-strain problem
where displacements are given as the boundary condition.
The form of elements is triangular. and the displacement
function is expressed by a linear polynomial. The adiabatic
stress-strain curve given by Eq. [2] is used as a constitutive
equation in the present code.>’-*"

An element stiffness matrix [K']. expressed per unit thick-
ness. is given by

[K] = AT -TT8YID)(B)(T ) (4]
where A is the area of a triangular element, [B] [T ~'] is the
matrix between the strains and the nodal displacements of
the element. and [D] is stress-strain matrix. The matrix [D}]
is represented by

| Y v 0
E
[pl=——m——m——| v 1 - v 0
1+ 0l = 20
(+ i v 0 (1-21)2
I ’ ’ ’ {5]
6|7 BT T
-y—1jo.0, a, o Th
So - p A A

’ ' 2
OTn O T Tn

where S, = 20°H/(9G) + 20*/3. v is taken as O when an
element deforms elastically, and taken as | when the ele-
ment deforms elasto-plastically. E is Young's modulus, G is
the shear mndulus, v is Poisson’s ratio. o, and o, are the
deviatoric stresses. and o and ¢, are the effective stress and
effective plastic strain, respectively.

H. the rate of strain-hardening. has been defined by
H = do/de, obtained from a conventional stress-strain
curve.” However, the values of * and £ * in the process of
calculation always deviate from the theoretical stress-strain
curve (o, ¢,) given by Eq. [2] or [4]. Therefore, the rate is
defined as H = (¢ — 0*)/(¢, — €,) where &, = &, +
A%, in the present FEM code, which has heen modified
from Swedlow’s code.?” A%, is given as an input datum of
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an incranental plastic strain for determining the rate H. This
definition suppresses the divergence of calculations auto-
matically. The Gauss elimination method is used for obtain-
ing the incremental displacements of nodal points from a
structural stiffness matrix assembled by using all the ele-
ment matrices.

D. Mesh and Boundary Conditions

Metallographic observations indicate that the band thick-
ness. in steels. is in the range 1 to 30 um. In the model
developed herein the band width was assumed to have a
thickness of 20 um. The material within the band is as-
sumed to have zero strength: the extremity of the band is
taken to be approximately semi-circular. Figure 3(a) shows
the mesh used to analyze the stresses and strains in the
extremity of the shear band. The shape is a rectangle with
a width of 400 um and a length of 500 um. The shear band

is represented by a notch with a semi-circular extremity with -

a 10 um radius (BAB’) in Figure 3(a): the notch has a depth
of 60 um and a width of 20 um. The mesh contains 318
elements and 176 nodal points.

In spite of the dynamic nature of the propagation of shear
bands. the rate of change of stresses is assumed to be suf-
ficiently low to allow for equilibration. Stress waves pro-
duced by impact travel up and return down repeatedly along

200 um

e —p—
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Fig. 3— Mesh divisions used for simple shear deformation: (a) notch in a
rectangular body; (b) boundary displacements imposed along boundary
DED’; () mesh used for obtaining detailed stress and strain distribution
around tip of notch.
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the y-direction between CD and C'D’, leading to equi-
libration after a few reflections. The deformation of the
notched body is considered to approach asymptotically the
deformation produced by simple shearing in quasi-static
equilibrium. Therefore, the tangential displacements are ap-
plied on the boundary CD in the x-direction and on the
boundary C'D’ in the opposite direction, these boundaries in
y-direction being fixed. The shear band is considered to
propagate into an infinite material in the x-direction, so that
the displacements in x-direction given along a boundary
DED' vary linearly as shown in the Figure 3(b) and its
boundary condition in y-direction is fixed.

The mesh division of Figure 3(c) is used for solving the
stress and strain distribution around the tip of the band in
detail. The shape is rectangular. with a width of 30 um and
a length of 60 um. This rectangle is also indicated by a
thicker line in Figure 3(a). Displacements obtained along
G'H’, H'I'. I'Y’. and J'G’ in Figure 3(a) are applied to the
mesh division of Figure 3(c). which contains 288 elements
and 169 nodal points. The area G'H'I'J’ in Figure 3(a) con-
tains only 36 elements: hence, the number of elements was
increased cight-fold.

ITI. MODEL PREDICTIONS

The model represented by the mesh shown in Figure 3(a)
simulates two situations: (a) the initiation of shear-band for-
mation (by simple shear deformation) at the tip of a notch;
(b) the propagation of a shear band. assuming that the re-
gion within the band and close to its tip has zero shear
strength. A simple shear deformation is thus applied to the
rectangular body of Figure 3(a); its elasto-plastic response is
assumed to obey the adiabatic effective stress—effective
strain behavior represented by Eq. [2] with the param-
eters oy, a. and B specified for the quench-and-tempered
HY-TUF steel. Figure 4(a) shows the deformed grid after a
tangential displacement d = 6.87 um is given. The lighter
boundary lines show the initial rectangle. The isostress (and,
consequently, isostrain) contour lines are shown in Fig-
ure 4(b). The stresses and strains marked along the lines are
effective values. It can be seen that, although the stress level
is fairly high in the whole body (1588 to 1869 MPa), the
plastic strain is concentrated on a narrow band ahead of the
notch tip. No plastic deformation occurs at the corners B
and B’, because they are part of free surfaces. Uniform
plastic deformation is produced near the boundary DED’,
because effects of the free surface CC’ and of the stress
concentration at the notch tip do not disturb the stress and
strain distribution near the boundary DED’.

A thicker solid curve in Figure 4(b) shows a contour line
of ¢ = 1869 MPa and &, = 0.0646; these values corre-
spond to the maximum stress o ., and the instability strain
€}, at the transition point on the adiabatic stress-strain curve.
The stress outside the contour line shown by the solid curve
increases with increasing plastic strain due to strain-
hardening: however, the stress inside the contour line de-
creases with increasing plastic strain due to strain-softening.
This behavior is shown explicitly in Figure 5(a). where the
distributions of stress and plastic strain are shown only in
the vicinity of the notch tip. The region contained within
the iscstress line (o = 1869 MPa) is considered to corre-
spond to the shear band. The tip of the contour line of the
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Fig. 4— (a) Deformation of the notched body produced by tangential dis-
placement of d = 6.87 um. Rectangular body before and after the defor-
mation shown by thin and thick solid lines. respectively. (b) Isostress (7')
and isostrain (7,) contour lines in material with adiabatic stress-strain
curve. Shear band is produced in narrow zone surrounded by a solid curve,
whose values of stress and plastic strain correspond (0 MaXiMumM SIFESS T mey
(1869 MPa) and instability strain 7, (0.0646) on the adiabatic curve.

shear band reaches a distance of 80 um from the notch tip
when the tangential displacement is 6.87 um. The shear
band propagates straight along the notch direction, deviating
only slightly from the symmetry line OE.

In order to compare the propagation of a shear band with
the progressive deformation produced in a material which
has no instability region, the deformation of the notched
body is determined for the monotonic work-hardening
curve, represented by Eq. [3]. Figure 5(b) shows the distri-
bution of effective stress and plastic strain near the notch
in the parabolic work-hardening material. The deformation
of the body and the distributions of stress and strain are
almost the same with those in the material of the adiabatic
curve except in the vicinity of the notch tip. The isostrain
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line for €, = 0.0646 is shown by a solid curve in Fig-
ure 5(b): this value is equal to the instability strain ¢ of the
adiabatic curve. The stress inside the contour line shown by
the solid curve increases with increasing plastic strain. This
behavior is the same as that outside the contour. but opposite
to that of the adiabatic curve. This contour line reaches a
distance of 50 um from the notch tip when the tangential
displacement is 6.87 um. This deformation progresses ex-
actly on the line OE as shown in the Figure S(b). compared
with the propagation of shear band shown by a broken
line. The concentration of strain within the &, = 0.0646
isostrain line, with the attendant reduction of stress. is the
critical feature responsible for the propagation of a shear
band. By increasing the imposed displacement d. this
behavior becomes more and more pronounced. the stress
within the instability strain contour line will decrease as d
is increased. This drastic difference between adiabatic
and isothermal deformation within the 7. = 0.0646 en-
velope contrasts with the ncarly identical isostress and iso-
strain contours outside the envelope. This shows that the
overall stress distribution is very similar and explains the
localization of the shear along a narrow band. In Fig-
ure 5(b). the width of the &, = 0.0646 envelope is of ap-
proximately 10 um.

In order to assess more clearly the effect of the increasing
tangential displacement 4 on the plastic strain distribution
along the symmetry axis OE (Figure 4(a)). the plots shown
in Figure 6 and 7 were made. The symmetry axis OE is
indicated by X'X" in Figure 6. The effective plastic strain ¢,
is plotted as a function of distance along X'X" in Figure 6.
Since the notch has a length of 60 um, the origin is set
at 60 um. The dashed lines represent the isothermal
(work-hardening) behavior. while the full lines indicate the
adiabatic behavior. At imposed displacements below
3.60 um, the two conditions deform identically. As d is
increased, the plastic shear strain increases at a faster rate
for the adiabatic than for the isothermal curve. The differ-
ence is highest at the notch tip. In order to see more clearly
this difference. the displacements along the Y'Y’ axis, pass-
ing through the element directly on the tip of the notch. are
plotted in Figure 7. The plastic strain ¢, at the node closest
to tip of the notch is shown in Figure 8(a); both nodes 130
and 160 have the same strain. They are shown in the left-
hand side of Figure 8(a). The data of Figure 8 show the
same very clear differences between the two cases when ¢,
is exceeded. While the plastic strain increases linearly with
the tangential displacement for the isothermal curve. in the
adiabatic curve there is a marked increase in the rate of
change of ¢,, when % is exceeded. The length of the in-
stability region is indicated as S in Figure 8(b). This region
is defined as the length of the &, = 0.0646 envelope for
purposes of comparison with the work-hardening curve.
Again, the lengths § show marked differences for the two
cases beyond a critical displacement d. The length of the
instability region § increases very rapidly with increasing
displacement d for the adiabatic behavior.

Attempts were made at increasing the displacement d
further, but serious problems arose regarding the divergence
of the solution. Therefore, it was not possible to analyze the
full range of the adiabatic stress-strain curve. However. the
trends shown in Figures 4 through 8 can only accentuate
themselves as displacement 4 is increased.
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Fig. S—(a) Isostress (@) and isostrain (Z,) contour lines near the notch in material with adiabatic stress-strain
curve. Shear band is produced inside an envelope of solid line ¥, = 0.0646. (b) Isostress (G ) and isostrain (7,)
contour lines near the notch in material with work-hardening curve.
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Fig. 6— Comparison of plastic strain distributions along X'X' between

matcrial with adiabatic stress-strain curve and material with monotonic
work-hardening curve.
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Fig. 8 —(a) Plastic strain €, in an element 160 as 2 function of tangential displacement d for both adiabatic and monotonic work hardening curves. (b) Length
of shear band for adiabatic stress-strain curve compared with corresponding distance S for monotonic work-hardening curve.

IV. CONCLUSIONS

The formation of an adiabatic shear band takes place by
the extension of its tip. The high strain rates, at which this
phenomenon usually takes place, are required for the pro-
duction of thermal softening. The finite element method
incorporating both elastic and plastic response of the mate-
rial is used successfully to determine the stresses and strains
surrounding a shear-band tip as a function of increased ap-
plied shear strain. Three important assumptions are used in
order to render the problem mathematically tractable: (a) the
material within the shear band is assumed to have negligible
shear strength, due to thermal softening: (b) an adiabatic
stress-strain curve represents the material behavior: (c) no
wave-propagation effects are considered. The data used are
taken from Olson ¢ al.” for a HY-TUF steel showing a
work-softening region following work hardening. The re-
sults show that the stress fields for an adiabatically and
isothermally (monotonic work hardening) deformed mate-
rial are essentially identical, except in the region directly
ahead of the shear-band tip. For the adiabatically-deformed
material, a band of material with accelerated deformation
ahead of the shear band forms. This region corresponds to
the portion of the stress-strain curve where work softening
sets in. As the strain increases, the stress decreases in that
region. In effect, increasing imposed shear deformation will
gradually reduce the stress in that region, until it can be
considered part of the shear band. As this happens, the stress
fields ahead of the band continuously change to produce
this strain-concentration region. For the monotonic work-
hardening material such a concentration of stress/strain is
not present because work hardening renders deformation at
the band tip more and more difficult.
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